MOC-NA 영상의 영역기준 영상정합

Area based image matching with MOC-NA imagery

  • 투고 : 2010.08.06
  • 심사 : 2010.08.20
  • 발행 : 2010.08.31

초록

화성의 고도정보를 제공하는 MOLA 센서는 화성전역에 대한 데이터를 제공하지 못하므로, 수치표고모형을 만들기 위해서는 MOC-NA영상을 이용한 영상정합이 수행되어야만 한다. 그러나 특색(feature)이 적고 명암대비가 낮은 화성영상의 특성상, 자동 영상정합은 어려운 실정이다. 본 논문은 MOC-NA 영상에 대하여 영역기준 영상정합에 기반한 반 자동 영상정합의 알고리즘을 다룬다. 공액점을 나타내는 시드(seed)포인트 들이 수동으로 스테레오 영상에 추가되고 이를 바탕으로 특징점들이 자동으로 삽입된다. 각 영상의 특징점들은 서로의 초기 공액점으로 사용되며, 영역기준 영상정합으로 정제된다. 영상정합의 과정 중 정합에 실패한 점들은 초기 공액점의 위치를 정합에 성공한 주변의 여섯 점들을 이용하여 재 계산한 후 정제된다. 타깃영상과 검색영상의 역할을 바꾸어 수행한 영상정합의 질적 평가 결과, 97.3%의 점들이 한 화소 이하의 절대거리를 나타내었다.

Since MOLA(Mars Orbiter Laser Altimeter) data, which provides altimetry data for Mars, does not cover the whole Mars area, image matching with MOC imagery should be implemented for the generation of DEM. However, automatic image matching is difficult because of insufficient features and low contrast. In this paper, we present the area based semi-automatic image matching algorithm with MOC-NA(Mars Orbiter Camera ? Narrow Angle) imagery. To accomplish this, seed points describing conjugate points are manually added for the stereo imagery, and interesting points are automatically produced by using such seed points. Produced interesting points being used as initial conjugate points, area based image matching is implemented. For the points which fail to match, the locations of initial conjugate points are recalculated by using matched six points and image matching process is re-implemented. The quality assessment by reversing the role of target and search image shows 97.5 % of points were laid within one pixel absolute difference.

키워드

참고문헌

  1. Albee, A. L., Arvidson, R. E., Palluconi, F. and Thorpe, T. (2001), Overview of the Mars Global Surveyor mission, Journal of Geophysical Research, American Geophysical Union, Vol. 106, No. E10, pp. 23291-23316.
  2. Anderson, F. S. and Parker, T. J. (2002), Characterization of MER landing sites using MOC and MOLA, The 33rd Lunar and Planetary Science Conference, Lunar and Planetary Institute, March 11-15, 2002, League City, Texas, unpaginated CD-ROM.
  3. Ding, Y-C (1991), Spatial Accuracy Estimation in the Geometric Correction of Digital Photomaps, PhD Thesis, University of Washington, Washington, US.
  4. Ivanov, A. B. and Lorre, J. J. (2002), Analysis of Mars Orbiter Camera Stereo Pairs, The 33rd Lunar and Planetary Science Conference, Lunar and Planetary Institute, March 11-15, 2002, League City, Texas, unpaginated CD-ROM.
  5. Kirk, R. L., Soderblom, L. A., Howington-Kraus, E. and Archinal, B. (2002), USGS High-resolution topomapping of Mars with Mars orbital camera Narrow-angle images, International Archives of Photogrammetry and Remote Sensing, ISPRS, Vol.34, Part 4, unpaginated CD-ROM.
  6. Li, R., Di, K., Hwangbo, J. and Chen, Y. (2007), Integration of Orbital and Ground Images for Enhanced Topographic Mapping in Mars Landed Missions, Annual NASA Science Technology Conference, NASA, College Park, Maryland, June 19-21, 2007, unpaginated CD-ROM.
  7. Rengarajan, R., Yoon, J. and Shan, J. (2004), Triangulation Based Hierarchical Image Matching for Mars DEM Generation Using MOC NA Stereo Images, ASPRS Annual conference, ASPRS, Denver, Colorado, May 23 to 28, 2004, unpaginated CD-ROM.
  8. Shan, J., Yoon, J., Lee, D. S., Kirk, R. L., Newmann, G. A. and Acton, C. H. (2005), Photogrammetric analysis of the Mars Global Surveyor mapping data, Photogrammetric Engineering & Remote Sensing, ASPRS, Vol. 71, No. 1, pp. 97-108. https://doi.org/10.14358/PERS.71.1.97
  9. Smith D. E., Zuber, M. T., Frey, H. V., Garvin, J. B., Head, J. W., Muhleman, D. O., Pettengill, G. H., Philips, R. J., Solomon, S. C., Zwally, H. J., Banerdt, W. B., Duxbury, T. C., Golombek, M. P., Lemoine, F. G., Neumann, G. A., Rowlands, D. D., Aharonson, O., Ford, P. G., Ivanov, A. B., Johnson, C. L., McGrovem, P. J., Abshire, J. B., Afzal R. S. and Sun, X. (2001), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars, Journal of Geophysical Research, American Geophysical Union, Vol. 106, No. E10, pp. 23,689-722.
  10. Yoon, J. (2004), Combined MARS Global Surveyor data processing for precise topographic mapping, PhD Thesis, Purdue University, Indiana, US.