Pseudo Inverse를 이용한 악취분류와 악취원 분석

유숙현†, 박상진‡, 구윤서**, 권희용****

요 약
본 논문에서는 특정 시점, 특정 장소의 대기 중에 발생하는 악취의 발생원을 추적하기 위한 악취분류 및 악취원 분석 방법을 제안한다. 이를 위해 악취원별 대표패턴의 생성이 필요하다. 이에 주요 악취원에서 측정한 67개의 악취들의 악취 대표패턴으로 생성하였다. 또한, 여러 악취가 대기 중에서 섞였을 경우를 고려하여, 각 악취들의 악취 대표패턴을 생성하였고, pseudo inverse method를 이용하여 악취에 대한 악취원들의 가중치를 계산하였다. 그 결과 해당 악취를 발생시킨 악취원들과 악취에 대한 기여도를 알아낼 수 있었다. 이러한 본 연구의 성과는 악취 관련 민원해결에 기여할 것으로 전망된다.
하지만 악취방지시설은 활성탄 흡착과 순식 스크립트로서, 악취제거효율을 유지하기 위해서는 지속적이고 유기물이 요구되고 있는데, 영업업체들의 경우 관리기술의 부족으로 활성탄과 세정수의 관리 및 교체가 제대로 이루어지지 않아 악취를 포함한 유해 대기 오염물질의 제거효율이 매우 낮았다. 또한 악취 방지시설이 제대로 가동되고 있지 못한 근본적인 원인으로는 형식적인 악취방지 규제와 설비용지 비용의 과다 등을 들 수 있다[3,4]. 게다가 대기중에서 발생한 악취는 추적하기가 용이하지 않아 악취에 대한 책임이 어느 사업장에 있는지 판별하기가 어렵다는 점이 악취관리를 처리하는데 장애로 작용되고 있다. 때문에 보다 근본적으로 악취방지를 해결하기 위해서는 단순히 악취제거시설을 운영하기에 앞서 정확하게 악취를 측정하고, 판별할 수 있는 악취모니터링이 요구된다.

기존에 시행되고 있는 악취모니터링 기술은 크게 두 가지로 나눌 수 있다. 첫째, 인간의 후각을 이용하여 직접 모니터링 하는 후각 측정법과 둘째, 기기를 활용하는 방법으로 현장에서 직접 모니터링 하는 센서방식과 실험실에서 분석하는 기기분석법이 있다. 각측정법은 인간의 후각을 기초로 평가하므로 민원대응에 효율적이지만, 다수의 악취환경 인이 필요하고, 주관적이며, 외향적인 가스를 투입할 수 있다는 단점이 있다. 기기분석법은 가스 내 악취함유물질 분석에 적합하지만, 악취강도, 냄새의 질 등 현장부적합이에 대한 종합적인 평가가 불가능하다. 악취센서방식은 현장부적합을 측정할 수 있고, 측정요원에 의한 측정오차가 없으나 후각과의 상관성을 완전히 표현하는 것이 어렵다는 점과 저능도 측정에 한계가 있다는 단점이 있다.

현재 국내에서는 주거지역이 산업단지와 거리가 가깝고, 다수의 악취유발원이 밀집되어 있어 악취폐해가 큰 지역을 중심으로 악취모니터링 시스템이 운영되고 있다.

전반한 동은 안산지역을 대상으로 주요 악취 오염원을 대상으로 발생지점을 파악하고, 표본 채취 및 기기분석을 통하여 악취물질의 종류를 파악하여 악취발원 DB를 구축하였고, 기상특성을 파악하여 악취물질의 이동경로를 파악하였다. 또한 안산지역의 악취발생특성, 지형특성, 기상특성이 반영된 악취모델링 시스템을 이용하여 악취 오염원이 주변지역에 미치는 영향을 평가하고, 주요 악취발생 영역의 악취발생현황을 파악하여 악취저감계획을 수립하였다[5]. 또한 안산시에서 On-Line GC를 이용하여 대기 중의 개별적인 악취오염물질에 대한 농도 측정 및 모니터링을 실시하고 있는 실험이다[6].

시화, 반월공단을 대상으로 나경호 등은 악취측정소에서 측정되는 분석자료를 통해 실시간 악취 fingerprint를 생성한 다음, 이를 수용함으로 악취이동 경로 및 업종별 악취발생특성을 이용한 악취 발생원 추적가능성을 연구하였다[7].

김학철 등은 악취측정센서와 CDMA 무선 통신방역 연동하여 원격으로 현장의 악취농도를 실시간으로 모니터링하며 일정한 이상으로 악취 발생시 현장에서 자동으로 경고를 포함하는 시스템을 제안했으며, 이는 대전 3.4 공단 인근 지역 2곳에서 시범적으로 설치 운영하고 있다[8].

국외에서 운용되고 있는 대표적인 악취모니터링 시스템은 캐나다의 Odowatch System과 일본의 Futaba System이 있다. Odowatch System은 16개 센서를 활용한 패턴인식으로 적절한 지역과 시스템방식 으로 Olfactor meter에 의한 OU/m2를 입력 자료로 하는 ISC3모델을 이용한 악취모델링 시스템과 연동된 Futaba System은 경질계, 중질계, NH3, H2S 등 4개 센서가 장착되어 있고, 풍향, 풍속 등 기상정보가 장착되어 있으며, Vector방식, semi-pattern 인식 프로그램을 활용하여 적정 검량선을 채택하는 방식을 활용하고 있다[9].

이와 같이 현재 국내에서 운용되고 있는 악취모니터링은 악취발생원의 주요 악취물질을 분석하고, 주변에 어떤 영향을 미치는지 평가하고, 악취모니터링을 운용하거나, 악취발생원으로부터 민원지역으로 악취를 추적해가는 방식이 대부분이다. 이런 방식들은 악취발생원의 악취측정을 중점으로 악취 감정에 효과를 볼 수 있지만, 대기상에서 악취가 섞여 형성된 복합악취에는 효과를 보기 어렵고, 민원 지역에서 발생한 악취에 대해 책임이 있는 사업장의 추적하는 것도 쉽지 않다. 또한, 유럽과 미국 등에서 사용되고 있는 Odowatch System과 일본에서 사용 중인 Futaba System등은 복합악취에 대한 효과가 있지만, 고가의 장비라는 점과 A/S가 어려다는 점 등을 미루어 볼 때 국내에서 활용되기 어려움이 있는 시스템이다.
따라서, 본 논문에서는 안정적이고 지속적으로 실시간 악취를 측정하기에 앞서는 sensor array로 악취를 측정한 후 페턴분류기에 의해 악취를 판별하는 악취추적방법을 제안하였다. 제안된 방법에는 먼저 악취발생원과 민원지역의 악취를 센서에레이어로 측정하고 악취발생 사례를 대표하는 고유한 악취 대표패턴을 생성하였다. 다음으로 미리 생성된 악취 대표패턴과 민원지역 악취의 유사도를 계산하여 악취의 종류를 분류하고, 악취에 대한 책임이 어느 사항에 있는지 악취에 대한 기여도를 판별하였다. 이러한 악취주격시스템의 결과물은 악취에 대한 발생원들의 책임을 명확히 할 수 있는 객관적 자료로써, 악취발생원들이 보다 논리적으로 악취관리시설을 운영하게 하는 동기가 될 수 있다.

악취의 종류를 파악하기 위해서 필요한 악취대표패턴은 대전 3,4공단 내의 20개 주요 악취원인 발생사업장에서 처리공정별로 측정한 67개의 악취를 기준으로 생성하였다. 또한 민원지역에서 발생한 악취가 단일 사업장에서 발생시킨 악취가 아니라, 대기 중에서 여러 개의 악취가 섞여 있을 경우를 고려하여 단일 악취대표패턴 2~3개를 조합하여 악취분류에 효과적인 복합악취 대표패턴을 생성하였다. 이렇게 생성된 악취 대표패턴을 이용한 분류방법은 악취를 발생시킨 사업장 뿐 아니라, 악취에 대한 기여도도 분석할 수 있었다. 또한 악취에 대한 책임이 있는 사업장의 기여도는 pseudo inverse method을 이용하여 연산 및 속도의 효율을 높였다.

이러한 본 논문의 결과는 악취발생사업장들이 등을적으로 악취제거시설을 운용하도록 하고, 악취원 해결에 보다 효율적으로 활용할 수 있을 것으로 기대된다.

2. 연구방법

대기 중에 발생한 특정 악취의 종류를 판별하기 위해서는 센서를 이용하여 악취를 측정하고, 그 측정 값과 미리 생성해 놓은 악취 대표패턴의 유사도를 계산하여 가장 유사도가 높은 부로서 결정해야 한다. 비슷한 방식을 가지는 악취들은 비슷한 센서 측정치를 가진다고 가정할 때, 분류를 수행한 결과 비슷한 악취끼리 군집을 형성하게 되고, 군집 분석과정을 통해서 악취 대표패턴의 성능을 평가할 수 있다.

2.1 악취의 표현과 유사도

악취를 센서로 측정하면 각 센서마다 측정값이 발생하고, 특정 악취에 대해 식(1)과 같은 형태의 자료를 획득할 수 있다.

\[X_i = [s_1, s_2, s_3, \ldots, s_j, \ldots, s_n] \] (1)

\(X_i \) : i번째 센서의 측정값, \(n \) 센서의 수

이 측정 자료 값 벡터 \(X_i \)는 \(n \) 차원 공간(페턴 공간)상의 한 점으로 표시할 수 있다. 따라서 같은 종류의 밀도에 대한 측정값은 페턴 공간상에서 특정 좌표에 모여 있게 된다. 이렇게 같은 종류의 측정값이 모여 형성한 집합을 공간이라 하고, 임의의 측정 자료들은 군집별로 나누는 처리 과정을 군집화라고 할 수 있다. 이때 같은 종류의 밀도인지를 판별하는 작업도 사용되다고 한다. 식(2)와 같이 정의 할 수 있다.

\[D = || X_i - X_j || = \sqrt{\sum_k (s_{ik} - s_{jk})^2} \] (2)

이는 페턴 공간상의 두 측정값 벡터 \(X_i \)와 \(X_j \)간의 유클리디안 거리(Euclidean Distance)를 유사도로 이용한 것으로 유사한 패턴일수록 측정값은 유사할 것이고, 페턴 공간상에서 거리가 가까울 것이라는 가정에서 출발한다. 본 논문에서는 악취분류를 수행함에 있어 군집화 처리과정을 거치지 않고, 미리 생성한 악취 대표패턴과 센서로 측정한 민원지역의 악취데이터의 거리를 계산하는데 식(2)의 유사도를 사용하였다.

2.2 악취대표패턴의 성능평가

악취 대표패턴과 민원지역의 각 악취 데이터와의 유사도를 계산하여 악취를 분류하게 되는 비슷한 악취는 같은 군집에 속하게 된다. 연일 악취분류에 이용된 악취 대표패턴의 성능이 좋다면, 분류된 군집의 분산은 작고, 악취 대표패턴과 각 악취 데이터간의 거리도 작을 것이다. 식(3)은 악취 대표패턴의 성능을 평가하기 위한 차표이다[10].

\[J = \sum_{i=1}^{N} \sum_{j=1}^{S} [X_i - m_j]^2 \] (3)

여기서 \(N \)는 군집 영역의 개수이고, \(S \)은 \(j \)번째 군집 영역에 속하는 표본 집합이며, \(m_j \)는 집합 \(S \)에 속하는 표본 패턴들의 평균 벡터로 식(4)과 같다.

\[m_j = \frac{1}{N} \sum_{X_i \in S} X \] (4)
3. 악취대표패턴 생성

3.1 단일 악취대표패턴

본 논문에서는 20개의 주요한 악취 민원 사업장에서 처리 공정별로 측정한 67개의 악취데이터를 기준으로 민원지역 악취데이터를 분류하였다. 악취데이터는 24개의 센서로 구성되어 있는 센서데이터를 사용하여 분산위로 측정하였고, 그 중 센서가 안정 상태를 유지하는 구간의 데이터를 취하여 악취대표패턴을 생성하였다. 따라서, 단일 민원지역의 악취에 대해 영향을 미치는 사업장의 특이가 가강했을 때, 단일 악취대표패턴은 다음과 같이 표현될 수 있다.

\[X_i = [s_1, s_2, \cdots, s_{24}] \]

식(5)에서 \(X_i \)는 각 사업장의 악취를 대표하는 67개의 악취대표패턴 중 악취대표패턴 \(i \)를 의미하며, 센서의 수가 24개이므로 24차원의 벡터로 표현될 수 있다.

3.2 복합 악취대표패턴

민원지역에서 발생한 악취가 한 사업장에서 기인된 것을라면, 3.1에서 소개한 단일 악취대표패턴으로 악취의 종류를 분류할 수 있다. 하지만, 민원지역에서 발생한 악취들은 반드시 하나의 사업장에서 배출된 악취라고 볼 수 없다. 대기 중에서 여러 사업장의 악취가 섞일 수 있기 때문이다. 따라서 본 논문에서는 여러 사업장의 악취가 섞인 경우에 대해서 효율적으로 분류하고자 악취 발생원이 측정하고 생성한 단일 악취대표패턴과의 평균 모든 값을 조합하여 새로운 악취대표패턴을 생성하고 이를 악취분류에 사용하였다. 이러한 일련의 수행결과는 다음과 같고, 이 과정을 통해 생성된 악취대표패턴을 복합 악취대표패턴이라 한다.

\[step\ 2 : 67\text{개의 단일 악취대표패턴을 기준으로 가능성 있는 단일 악취대표패턴의 조합과 가중치(0.1 \sim 1.0)의 조합을 Lookup Table로 구성한다.} \]

\[step\ 3 : \text{단계} 2\text{에서 생성한 Lookup Table의 내용대로 복합 악취대표패턴을 생성한다.} \]

\[m_{Odor_i} = \sum_{m=1}^{comp} (\text{odor}_j \times w_k) \]

\((m_{Odor} : \text{합성된 복합 악취대표패턴, } \text{comp} : \text{합성한 단일 악취대표패턴의 개수, } j : \text{단일 악취대표패턴 번호, } k : \text{가중치 번호, } \text{odor : } j\text{번째 단일 악취대표패턴, } W_k : k\text{번째 가중치}) \]

\[step\ 4 : \text{모든 입력패턴에 대해 단계} 3\text{에서 생성된 복합 악취대표패턴과의 유사도를 측정하여 거리를 가장 가까운 군집에 배정한다.} \]

\[D = \| X_i - X_j \| = \sqrt{\sum_k (s_{ik} - s_{jk})^2} \]

위에서 소개한 복합 악취대표패턴을 생성하는데 있어서 중요한 두 parameters는 단일 악취대표패턴과 그 단일 악취대표패턴의 악취에 대한 기여도이다. 예를 들어, 민원지역의 한 악취의 구성분성이 사업장 A의 악취가 10%, B가 50%, C가 40% 섞인 것이라면, 단일 악취대표패턴 [A,B,C]의 조합과 [0.1, 0.5, 0.4]의 가중치 조합으로 구성된 복합 악취 패턴과 가장 큰 유사도를 가지게 된다. 이는 해당 악취에 책임이 있는 사업장 A, B, C와 악취에 대한 기여도를 찾아낼 수 있다는 의미이다. 따라서, 이렇게 생성시킨 복합 악취대표패턴으로 민원지역의 악취분류를 수행하면, 해당 악취에 대해 어느 사업장이 영향되었는지 뿐만 아니라, 얼마나 영향을 미쳤는지를 나타내는 기여도를 분석할 수 있다.

3.3 Pseudo Inverse를 이용한 악취추적 알고리즘

3.1-3.2에서 소개한 단일 악취대표패턴과 복합 악취대표패턴은 민원지역의 악취를 분류하고, 악취를 발생시킨 사업장은 추적하는 데 이용할 수 있다. 그러나, 복합 악취대표패턴의 경우, 67개의 단일 악취대표패턴과 가중치 태이블의 모든 가능한 조합을 계산해보면, 2개의 단일 악취대표패턴을 조합했을 경우 19,170개이고, 3개의 단일 악취대표패턴을 조합했을 경우 총 1,537,902개의 복합 악취대표패턴이 생성된다. 다가나 이것은 단지 가중치를 0.1단위로 증가시
키면서 조합할 경우에 해당하는 악취대표패턴의 수이다. 만일 가중치 레이블을 0.01단위 혹은 그 이하의 단위로 구성한다고 하면, 가능한 조합의 수는 기하급 수적으로 늘어나게 될 것이다. 이것은 악취대표패턴과 민원지역의 악취의 유사도를 계산하여, 악취 발생 원을 검색할 때 드는 시간과 악취대표패턴을 시스템에 유지시키는데 사용되는 메모리 양을 생각할 때, 너무 오버헤드가 큰 작업이다. 따라서, 본 논문에서는 이에 따른 이용을 감소시키고, 악취모니터링시스템으로서의 실제 활용도를 높이기 위하여 비록 모든 복합 악취대표패턴의 가능한 조합을 생성하고 시스템에 유지시키는 방식이 아니라, 민원지역의 악취데이터와 유사도를 비교하는 과정에서 바로 기억을 계산하는 방식을 취했다. 이 방식에는 pseudo inverse method를 사용하였다.

악취를 추적하는 과정은 민원지역의 악취와 복합 악취대표패턴과의 유사도를 계산해서 가장 가까운 유사도를 가지는 복합 악취대표패턴으로 분류하는 것이라 할 수 있다. 이때, 민원지역의 악취를 식(6), 복합 악취대표패턴은 식(7), 기여도를 식(8)로 나타낼 수 있으며, pseudo inverse method를 이용하면 특정악취에 대한 가장 적합한 기여도 A를 찾을 수 있다. 이는 식(9)에서 설명된다 \[11-15\].

\[Y = \begin{bmatrix} y_1, y_2, \ldots, y_n \end{bmatrix} \]

\[X = \begin{bmatrix} x_{11}, x_{12}, \ldots, x_{1n} \\ x_{21}, x_{22}, \ldots, x_{2n} \\ \vdots \\ x_{m1}, x_{m2}, \ldots, x_{mn} \end{bmatrix} \]

\[n : 복합 악취대표패턴을 구성하는 단일 악취대표패턴의 수, x_{ij} : n번째 단일 악취대표패턴의 1번째 측정치 \]

\[A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \]

\[n : 단일 악취대표패턴의 수, a_i : n번째 단일 악취대표패턴의 기여도 \]

\[AX = Y \]

\[\text{식(9)에서, } X\text{은 복합 악취대표패턴, } Y\text{은 민원지역의 악취이며, } X\text{를 } Y\text{에 fit시키는 최적의 기여도 } A\text{는 식(10)과 식(11)에서 설명한대로 전개하여 구할 수 있다.} \]

\[AXX^T = YX^T \] \hspace{1cm} (10)

\[A = AXX^T(XX^T)^{-1} = YX^T(XX^T)^{-1} \] \hspace{1cm} (11)

식(6)∼(11)에서 설명한 pseudo inverse를 이용한 악취 기여도 추적 알고리즘은 다음과 같이 진행된다.

\[\text{그림 1. Odor weight searching algorithm using pseudo inverse method} \]

\[(Y_i : i\text{-th odor in civil compliant} \]
\[n : \text{total odor number} \]
\[X_j : j\text{-th complex odor representative patterns} \]
\[m : \text{total number of complex odor representative patterns} \]
\[A : \text{weights of sources about } Y_i \]

4. 실험 및 결과

4.1 실험 환경

본 논문에서는 악취분류 및 악취원 추적을 위하여 24센서로 구성된 sensor array로 민원지역과 악취발
생원의 악취를 측정하였다. 그림 2에서 소개한 악취 측정에 사용된 sensor array는 MnCO(주)에서 개발 중인 제품을 개조한 것으로서, 사양은 1.6GHz 2Core CPU와 2GB의 Memory, 320GB의 HardDisk이다. 악취 측정 센서 및 온도, 습도, 압력 센서와 풍속과 풍향을 측정할 수 있는 기상 관측 장비가 부착되어 있다.

악취 발생원은 민원지역의 악취와 밀접한 관련이 있는 대전 34구 단 내 20개의 주요 악취 발생 사업장 을 선정하였고, 각각 처리 홍정별 3~4개씩 67개의 악취를 측정하였다.

민원지역은 악취 피해가 극심한 목상동 부근으로 선정하여 2008년 1월부터 2009년 5월까지 4개월 간 총 7807개의 악취를 측정하였다.

이렇게 각각 민원지역의 악취발생원에서 분산된 악취 데이터들은 24차원의 데이터로써, 센서가 안정상태를 유지하는 구간의 데이터만을 취하여 사용하고, 그 중 악취발생원의 데이터는 악취 대 표패턴을 생성하는데 사용하였다.

그림 2. 24sensor로 구성된 sensor array

4.2 실험내용

본 논문의 목적은 악취추적을 위하여 악취를 분류할 수 있는 악취대표패턴을 생성하고, 그것을 이용하여 민원지역 악취의 발생원과 기여도를 밝히는 것이다.

이를 위하여 다음의 세 가지 실험을 수행하였다.

첫째, 20개의 주요 사업장에서 측정한 67종류의 악취를 단일 악취대표패턴으로 생성하여 민원지역 악취의 악취를 분류하는 실험이다. 이것은 악취에 대해 악취발생원이 한 곳이라는 가정에서 출발한다. 즉, 민원지역에서 발생한 악취는 한 사업장에서 발생시키는 빈세라는 의미이다. 하지만 대기 중에서 발생한 악취는 반드시 한 사업장의 악취로만 이루어졌다고 볼 수 없다.

따라서, 둘째로 대기 중에서 여러 가지 악취가 혼합되었음을 고려하여 복합 악취대표패턴을 생성하고, 민원지역의 악취를 분류하는 실험을 수행하였다. 이를 위해 67개 단일 악취대표패턴에 대해 2~3개의 모든 가능한 조합을 구성하였고, 그 조합에 대해 가장치를 달리하여 생성되는 모든 가능한 경우를 복합 악취대표패턴으로 생성하였다. 여기서, 복합 악취대표패턴을 생성하는데 조합할 단일 악취대표패턴의 수를 단지 2~3개로 제한한 이유는 한 악취에 대해서 4개 이상의 사업장을 발생원으로 선정하는 것은 의미가 없기 때문이다. 이렇게 복합 악취대표패턴으로 악취를 분류하면, 임의의 악취에 대해 그 악 취를 발생시킨 사업장들의 부분 양을 악취에 대한 기여도를 확인할 수 있다. 하지만, 이렇게 단순이 모든 가능한 경우를 따져 복합 악취대표패턴을 생성시키고, 그것을 시스템에 유지하는 것은 계산량과 시간, 시스템에 모두 큰 오버헤드를 초래한다.

따라서, 셋째로 이러한 문제점을 해결하기 위해서, 기여도 계산에 pseudo inverse method를 이용하였다. 이 방법으로 악취를 분류할 때, 단지 67개의 단일 악취대표패턴의 모든 경우를 모두를 이용한 계산이며, 아님하면, 기여도는 악취대표패턴과 민원지역 악취의 유사도 비교 시에 계산할 수 있기 때문이다. 이 방법의 효율성은 두 번째 실험과 비교함으로 극명하게 비교된다. 즉, 두 번째 실험에서 모든 단일 악취대표패턴과 가장한 테이블을 조합했을 경우는 19,170개의 복합 악취대표패턴을 생성하는데, 이에 비하여, 본 실험에서 단일 악취대표패턴 3개를 조합한 경우는 2,211개의 복합 악취대표패턴만 유지를 한다. 마찬가지로 단일 악취대표패턴 3개를 조합했을 경우, 두 번째 실험방식은 1,537,992개, pseudo inverse method를 이용하면, 47,905개의 복합 악취대표패턴이 생성된다. 이는 단순히 가장치를 범위하는 두 번째 실험방식에 비해 각각 88%와 97%로 계산량이 감소된 것으로 조합할 단일 악취대표패턴의 수가 늘어남에 따라 계산량 감소비율은 더욱 증가한다. 더구나 두 번째 실험방식에서는 복합 악취대표패턴을 생성할 때, 단지 가장치를 0.1단위로 조합했으므로 그 사 이 존재하는 수많은 경우의 기여도가 무시되었지만, pseudo inverse method는 악취에 대한 정확한 기여
도를 계산해 볼 수 있다.

4.3 실험결과

4.2 절에서 소개한 세 가지 실험의 결과는 아래와 같다. 이 실험들에서는 두 종류의 복합 악취 대표패턴이 생성되는데, 악취대표패턴을 2개 조합하여 생성한 복합 악취대표패턴을 2src 복합 악취대표패턴이라 하고, 단일 악취대표패턴을 3개를 조합하여 생성한 복합 악취대표패턴을 3src라 정의하였다.

첫 번째 실험은 67개 악취발생원의 악취를 단일 악취대표패턴으로 생성하고, 악취를 분류한 실험이다. 그림 3은 67개의 단일 악취대표패턴 중 악취에 가장 많은 영향을 끼친 사업장의 단일 악취대표패턴을 나타낸 그래프이고, 표 1은 단일 악취대표패턴으로 민원지역 악취 데이터를 분류한 결과 중 일부를 나타낸 것이다.

두 번째 실험은 67개의 단일 악취대표패턴을 2개, 3개씩 조합하여 복합 악취대표패턴을 생성하고, 악취를 분류한 실험이다. 여기서 표 2는 2src 복합 악취대표패턴으로 민원지역 악취를 분류한 결과이고, 표 3는 3src 복합 악취대표패턴으로 민원지역 악취를 분류한 결과이다.

표 1~표 3에서 20번 악취의 분류결과를 보면, 단

<table>
<thead>
<tr>
<th>악취번호</th>
<th>발생원</th>
<th>기여도</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>lotte</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>lotte</td>
<td>1</td>
</tr>
</tbody>
</table>

2147	lotte	1
2148	lotte	1
2149	lotte	1
2150	lotte	1
2151	lotte	1
5545	lotte	1
5546	lotte	1
5547	lotte	1
5548	lotte	1
5549	lotte	1
5550	lotte	1

그림 3. 민원유발 상위 5개의 단일 악취대표패턴
일 약취대표패턴으로 분류한 경우는 lotte사업장이 단독 약취발생원으로 분류되었고, 2src 복합 약취대표패턴으로 분류한 경우는 lotte사업장이 90%, tirRICO사업장이 10% 약취에 영향을 미친 것으로 분류되었다. 3src 복합 약취대표패턴으로 분류한 경우는 lotte사업장이 80%, tirRICO사업장이 10%, envir 사업장이 10% 약취에 영향을 미친 것으로 분류되었다.

이러한 결과는 민원지역의 약취를 단일 약취대표패턴으로 분류할 경우 가장 약취에 대해 큰 영향을 미친 사업장을 판별해내지만, 동일한 약취를 복합 약취대표패턴으로 분류하게 되면 1순위 영향을 미친 사업장뿐 아니라 다음 순위의 영향을 미친 사업장도 판별해내고, 기여도를 알아낼 수 있음을 나타낸다.

표 4와 같이 4에서 약취분류 실험에 사용된 단일 약취대표패턴과 2src 복합 약취대표패턴, 3src 복합 약취대표패턴의 성능을 나타내었다. 표 4에서 대표패턴 수는 약취대표패턴의 총 개수를 의미하고, 소속 패턴 수는 분류결과 각 약취대표패턴에 소속된 민원지역 약취의 수이며, 거리는 약취대표패턴과 소속된 약취간의 거리의 평균이다. 그림 4는 각각 3종류의 약취대표패턴으로 복합도 민원지역 약취를 분류했을 때, 각 약취대표패턴과 민원지역 약취와의 유사도 차이를 나타낸 것이다. x축은 민원지역에서 점
정한 악취들의 변호이고, y축은 악취대표패턴과 민원지역 악취사례의 거리이다. 이 거리가 작을수록 해당 악취대표패턴과 민원지역 악취가 더 큰 유사도를 갖는다. 2.2절에서 소개한 바와 같이 한 군집을 대표하는 대표패턴이 좋은 성능을 가진다면, 대표패턴과 소속 패턴간의 거리와 분산 및 표준편차는 작을 것이 다. 아래의 표 4와 그림 4에서 보인바와 같이 세 종류의 악취대표패턴 중 3src 악취대표패턴이 악취태터와의 거리가 가장 짧고, 분산 및 표준편차가 다른 2종류의 악취대표패턴에 비하여 작은 값을 가져 좋은 성능을 가짐을 알 수 있다.

세 번째 실험은 복합 악취대표패턴으로 악취를 분류하기, pseudo inverse method를 이용하여 악취발생원의 기여도를 계산한 경우이다. 이 결과는 표 5와 그림 6에 나타내었다. 예를 들어, 20번 악취에 대해 표 1-표 3에서 보인 단순 가중치 배정 방식에 의한 결과와 비교해 보면, 악취에 대해 영향을 미친 사업장 1순위가 lotte, 2순위가 tirRCO, 3순위가 envir로 동일한 것을 알 수 있다. 하지만, 기여도는 각각 83%, 12%, 2%로 단순 가중치 배정방식에 대해 좀 더 세밀하게 기여도를 계산해 볼 수 있는 것은 알 수 있다.

그림 5는 pseudo inverse 방식의 복합 악취대표패턴으로 민원지역의 악취를 분류한 결과로서, 3 종류의 악취대표패턴과 민원지역의 악취간의 거리를 비교한 것이다. 역시 단순 가중치 배정방식에 의한 복합약취 대표패턴의 경우와 마찬가지로 3src 복합 악취대표패턴이 민원지역 악취의 유사도가 가장 높아 제일 좋은 성능을 가짐을 알 수 있다.
표 6. pseudo inverse method에 의한 3src 복합 약취대표패턴으로 약취를 분류한 결과

<table>
<thead>
<tr>
<th>약취 번호</th>
<th>발생원 1 기여도</th>
<th>발생원 2 기여도</th>
<th>발생원 3 기여도</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>lotte 0.83</td>
<td>tirRCO 0.10</td>
<td>envir 0.06</td>
</tr>
<tr>
<td>5</td>
<td>lotte 0.83</td>
<td>tirRCO 0.10</td>
<td>envir 0.05</td>
</tr>
<tr>
<td>6</td>
<td>lotte 0.78</td>
<td>tirRCO 0.14</td>
<td>envir 0.06</td>
</tr>
<tr>
<td>7</td>
<td>lotte 0.83</td>
<td>tirRCO 0.10</td>
<td>envir 0.05</td>
</tr>
<tr>
<td>8</td>
<td>lotte 0.84</td>
<td>tirRCO 0.09</td>
<td>envir 0.05</td>
</tr>
<tr>
<td>9</td>
<td>lotte 0.84</td>
<td>tirRCO 0.09</td>
<td>envir 0.05</td>
</tr>
<tr>
<td>10</td>
<td>lotte 0.82</td>
<td>tirRCO 0.10</td>
<td>envir 0.04</td>
</tr>
<tr>
<td>11</td>
<td>lotte 0.83</td>
<td>tirRCO 0.10</td>
<td>envir 0.06</td>
</tr>
<tr>
<td>12</td>
<td>lotte 0.80</td>
<td>tirRCO 0.13</td>
<td>envir 0.06</td>
</tr>
<tr>
<td>13</td>
<td>lotte 0.76</td>
<td>tirRCO 0.16</td>
<td>envir 0.05</td>
</tr>
<tr>
<td>14</td>
<td>lotte 0.81</td>
<td>tirRCO 0.12</td>
<td>envir 0.02</td>
</tr>
<tr>
<td>15</td>
<td>lotte 0.80</td>
<td>tirRCO 0.12</td>
<td>envir 0.05</td>
</tr>
<tr>
<td>16</td>
<td>lotte 0.84</td>
<td>tirRCO 0.10</td>
<td>envir 0.02</td>
</tr>
<tr>
<td>17</td>
<td>lotte 0.85</td>
<td>tirRCO 0.10</td>
<td>envir 0.02</td>
</tr>
<tr>
<td>18</td>
<td>lotte 0.82</td>
<td>tirRCO 0.11</td>
<td>envir 0.05</td>
</tr>
<tr>
<td>19</td>
<td>lotte 0.85</td>
<td>tirRCO 0.09</td>
<td>envir 0.02</td>
</tr>
<tr>
<td>20</td>
<td>lotte 0.83</td>
<td>tirRCO 0.12</td>
<td>envir 0.02</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2147</td>
<td>lotte 0.76</td>
<td>envir 0.18</td>
<td>tirRCO 0.11</td>
</tr>
<tr>
<td>2148</td>
<td>lotte 0.76</td>
<td>envir 0.18</td>
<td>tirRCO 0.10</td>
</tr>
<tr>
<td>2149</td>
<td>lotte 0.77</td>
<td>envir 0.18</td>
<td>tirRCO 0.10</td>
</tr>
<tr>
<td>2150</td>
<td>lotte 0.76</td>
<td>envir 0.18</td>
<td>tirRCO 0.12</td>
</tr>
<tr>
<td>2151</td>
<td>lotte 0.74</td>
<td>envir 0.19</td>
<td>tirRCO 0.12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5545</td>
<td>lotte 0.66</td>
<td>envir 0.17</td>
<td>dyl 0.12</td>
</tr>
<tr>
<td>5546</td>
<td>lotte 0.65</td>
<td>envir 0.15</td>
<td>dyl 0.17</td>
</tr>
<tr>
<td>5547</td>
<td>lotte 0.66</td>
<td>envir 0.15</td>
<td>dyl 0.17</td>
</tr>
<tr>
<td>5548</td>
<td>lotte 0.66</td>
<td>envir 0.15</td>
<td>dyl 0.17</td>
</tr>
<tr>
<td>5549</td>
<td>lotte 0.64</td>
<td>envir 0.15</td>
<td>dyl 0.19</td>
</tr>
<tr>
<td>5550</td>
<td>lotte 0.64</td>
<td>envir 0.16</td>
<td>dyl 0.16</td>
</tr>
</tbody>
</table>

5. 결론

본 논문에서는 산업단지 주변에 공도록 있는 약취발생원 및 개선을 위한 하나의 방안으로 약취분류 및 약취원 분석방법을 제안하였다. 제안된 방법은 먼저 주요한 약취발생원을 기준으로 약취대표패턴을 생성하고, 생성된 약취대표패턴과 민원지역 약취간의 유사도를 비교하여 약취발생 원 판별 및 기여도를 계산하는 것이다. 그 결과 각기 하나의 사업장의 약취를 대표하는 단일 약취대표패턴과 여러 사업장의 약취가 조합된 복합 약취대표패턴이 생성되었다. 단일 약취대표패턴을 이용한 약취 추적은 약취를 발생시킨 재원 주된 책임이 있는 사업장 하나만을 추적할 때 유효하고, 비교検수가 적어서 빠른 시간안에 검색이 가능하다. 복합 약취대표패턴
Pseudo Inverse를 이용한 악취분류와 악취원 분석

그림 6. 단순가중치방식과 pseudo inverse에 의한 2src 복합 악취대표패턴의 성능비교

그림 7. 단순가중치방식과 pseudo inverse에 의한 3src 복합 악취대표패턴의 성능비교

을 이용한 악취추적은 악취에 책임이 있는 둘 이상의 사업장과 그 기여도를 추적할 수 있는 방법이다. 특히 복합악취대표패턴을 이용한 악취추적 방식에서는 pseudo inverse method를 이용하여 검색의 효율성은 높였다.

군집분석방법에 의해 본 논문에서 제안한 악취대표패턴들을 평가한 결과 단일 악취대표패턴 3개를 조합한 복합 악취대표패턴이 분산은 작고, 변형지역의 악취데이터의 유사도가 높아서 가장 우수한 성능을 보였다.

현재 국내에서 시행되고 있는 악취모니터링 시스템은 복합악취에 취약하고, 복합악취 관별기능이 없는 국외의 시스템은 너무 고가여서 도입이 어렵다. 이러한 현실을 고려해 볼 때, 제안된 악취분류 및 악취원 분석 방법은 저자의 바람으로 악취를 측정할 수 있고, 측정된 악취를 빠르게 분류할 수 있으며, 복합악취에 대해 악취발생원을 아리랑 기여도까지 알아낼 수 있어 실시간 악취모니터링 시스템으로서의 활용가치가 높을 것으로 예상된다.

참고 문헌

[4] 오일환, 서정은, 김태형, "창원공단 주요 악취원
발생지역 주변 악취발생 현황조사 및 저감방
안에 관한 연구," 한국환경과학회지, 제17권, 제
5호, pp.525-535, 2008. 03.

기술개발센터, 안산, pp.3-9, 2006. 01.

[6] 손경식, 김형수, 이갑성, 조현선, 신형식, 김학용,
송기봉, 박강호, "안산지역 악취문제(환경오염 및
단화수소류)의 개별화(가을,겨울철)추세 분석조사," 한국대기환경학회 춘계학술대회 논문집,

[7] 나경호, 박용춘, 장명기, "바람방 및 Fingerprint
를 이용한 악취추적기법 활용가능성 평가," 한

[8] 김호철, 하성민, 홍성현, 김경욱, "실시간 악취모
나터링 및 자동 공기 포집 시스템," 한국대기 환

[9] 김호성, "안산시 산업단지 악취모니터링사업 개
선방안 도출 및 시범사업," 안산환경기술개발센
터, 안산, pp.35-64, 2008.

[10] 이상환, 패턴인식의 원리 I, 홍릉과학출판사, 서

inverses: Theory and Application," Wiley–
Interscience, 1974. second ed., Springer–Verlag,

Inverse: Theory and Computations," Science

[14] Lingsheng Meng and Bing Zheng, "The
optimal perturbation bounds of the
Moore–Penrose inverse under the Frobenius
norm," Linear Algebra and its Application,

and Zi-zhen Li, "The condition numbers for
weighted Moore–Penrose inverse and weighted
linear least squares problem," Applied Mathe-
matics and Computation, Vol.215, Issue 1,

유 속 현
1999년 안양대학교 컴퓨터공학과
학사
2002년 안양대학교 컴퓨터공학과
석사
2002년 현계 안양대학교 대림대
학 출강
2005년 현계 안양대학교 컴퓨터
공학과 박사과정

박 상 진
1979년 고려대학교 톡목공학과
학사
1983년 고려대학교 톡목공학과
석사
1993년 고려대학교 톡목환경공
학과 박사
1983년 ~ 1985년 한국종합기술개발공사 상하수도부, 개정
1985년 ~ 1995년 한국건설기술연구원 환경연구실, 수석
연구원
1995년 ~ 현재 우송대학교 칠도건설환경공학과 교수
관심분야: 악취평가 및 제어, 하폐수처리 및 수질관리, 상하수도

구 윤 서
1982년 서울시립대학 화학공
학과 학사
1984년 서울대학교 화학공학과
석사
1994년 Louisiana State
University 화학공학과
박사
1984년 ~ 1992년 산업과학연구원(RIST) 주임연구원
1994년 ~ 1995년 University of Sydney 박사후 연구원
1996년 ~ 현재 안양대학교 컴퓨터공학과 교수
관심분야: 대기환경오, 대기관리, 대기확산모델링, 악취
모델링

권 희 용
1983년 서울대학교 전자계산기
공학과 학사
1985년 서울대학교 전자계산기
공학과 석사
1993년 서울대학교 컴퓨터공학
과 박사
1986년 ~ 1995년 한국통신 연구개발단 삼림연구원
1995년 ~ 현재 안양대학교 컴퓨터공학과 교수
관심분야: 패턴인식, 신경망, 영상처리, 병렬처리응용