Evaluation of the Second Order Analysis of Asymmetric Unbraced Frame by using Load Amplification Factor

하중증폭계수를 적용한 비대칭 비가새 골조 2차 해석 평가

  • Received : 2009.12.13
  • Accepted : 2010.02.10
  • Published : 2010.02.27

Abstract

The purpose of this study was to evaluate the validity of the second-order analysis for asymmetric unbraced frame using the load amplification factor suggested by design codes. For this purpose, the first-order analysis with the B1 and B2 factors suggested by KBC 2005 and the direct analysis with the load amplification factors suggested by KBC 2009 were performed for five story - two bay and five story - four bay asymmetric unbraced steel frames. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the validity of the suggested methods. The main parameters of the analysis were the shape of the frame, the axial load ratio of the column, the methods of analysis and the location of column. The research results show that the asymmetric shape of the frame deteriorates the validity of the factor B2 and the suggested methods. The range of error is increased in case of irregular or inclined column.

본 연구는 비대칭 비가새 골조를 대상으로 강구조 설계기준에서 제시하고 있는 하중증폭계수를 적용한 2차 해석법의 타당성을 해석적 방법을 통해 평가하는데 그 목적이 있다. 이를 위해 KBC 2005에서 제안하고 있는 B1 및 B2 계수를 적용한 2차 해석과 KBC 2009에서 제안하고 있는 하중증폭계수를 적용한 직접해석을 5층 2스팬 및 5층 4스팬 비대칭 비가새 강구조 골조에 대해 실시하고, 그 해석 결과를 2차 비탄성 해석 결과와 비교하여 기준에서 제안된 2차 해석법들을 평가하였다. 해석의 주요 변수로는 골조 형상, 기둥 축력비, 해석방법, 기둥수평위치 등이 적용되었다. 연구 결과 구조물의 비대칭성은 B2 계수 및 제안된 해석법의 유효성에 영향을 미치는 것으로 나타났으며, 특히 기둥삭제 및 경사 기둥의 경우 오차의 범위가 증가하는 것으로 나타났다.

Keywords

References

  1. 김희동, 이명재(2009) 하중증폭계수를 적용한 비가새 골조 2차 해석 평가, 한국강구조학회논문집, 한국강구조학회, 제21권, 제 6호, pp.627-636.
  2. 대한건축학회(2005) 건설교통부고시 건축구조설계기준, 대한건축학회.
  3. 대한건축학회(2009) 건설교통부고시 건축구조설계기준, 대한건축학회.
  4. Carter, C.J. and Geschwindner, L.F. (2006) A comparison of frame stability analysis methods in ANSI/AISC 360-05, ASCE.
  5. Chen, W.F. and Sohal, I. (1995) Plastic Design and Second-order Analysis of Steel Frames. Springer-Verlag, USA.
  6. Galambos, T.V. (1968) Structural Members and Frames, PrenticeHall, USA.
  7. Galambos, T.V. (1998) Guide to the Stability Design Criteria for Metal Structures, 5th Edition, John Wiley & Sons, Inc., USA.
  8. Kim, H.D. and Lee, M.J. (2002) The Influence of the P- Δ Effects on the Behavior of Unbraced Frames, Proc of International Symposium on of Steel Structures, KSSC, Korea, pp.333-344.
  9. Kim, H.D. and Lee, M.J. (2009) Experimental Investigation of the P-Δ Effect and Factor B2 of Low-rise Unbraced Steel Frames, International Symposium on of Steel Structures, Vol. 9. No. 2, KSSC, Korea, pp.131-141.
  10. Kim, S.E. and Chen, W.F. (1998) LRFD Steel Design Using Advanced Analysis, CRC Press, USA.
  11. LeMessurier, W.J. (1972) A Practical Method of Second-order Analysis (Part 2: Rigid Frames), Engineering Journal, AISC, Vol. 14, No. 2, USA, pp.89-96.
  12. Surovek-Maleck, A.E. and White, D.W., (2004) Alternative approaches for elastic analysis and design of steel frames. I:Overview, Journal of structural engineering, ASCE, pp.1186-1196.
  13. Surovek-Maleck, A.E. and White, D.W. (2004) Alternative approaches for elastic analysis and design of steel frames. II: Verification studies, Journal of structural engineering, ASCE, pp.1197-1205.
  14. Surovek-Maleck, A.E. and Ziemian, R.D. (2005) The direct analysis method: Bridging the gap from linear elastic analysis to advanced analysis in steel frame design, ASCE.
  15. White, D.W., Surovek-Maleck, A.E., Alemdar, B.N., Chang, C.J., Kim, Y.D., and Kuchenbecker, G.H. (2006) Stability analysis and design of steel building frames using the 2005 AISC specification, International Symposium on of Steel Structures, Vol. 6, No. 2, pp.71-91.
  16. Yura, J.A. (1971) The Effective Length of Columns in Unbraced Frames, Engineering Journal, AISC, Vol. 8, No. 2, USA, pp.37-42.