Flexural Behavior of Composite HSB I-Girders in Positive Moment

HSB 강합성거더 정모멘트부 휨거동

  • 조은영 (명지대학교 토목환경공학과) ;
  • 신동구 (명지대학교 토목환경공학과)
  • Received : 2010.04.21
  • Accepted : 2010.06.28
  • Published : 2010.08.27

Abstract

The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

HSB600 및 HSB800 고성능강재를 적용한 정모멘트부 강합성거더의 휨거동을 비선형 모멘트-곡률 해석법으로 분석하였다. 연성특성이 다른 3개의 대표적인 강합성거더 기본 단면을 선정하여 모멘트-곡률 해석법으로 모멘트-곡률 이력과 휨저항강도를 구하고 비선형 유한요소해석 프로그램 ABAQUS(2008)로 구한 결과와 비교하여 모멘트-곡률 해석 프로그램을 검증하였다. 비선형 유한요소해석 시에는 플랜지, 복부판 및 콘크리트 바닥판을 판요소로 모델링하여 3차원 강합성거더 유한요소모델을 적용했으며 초기변형과 단면의 잔류응력을 고려하여 해석하였다. 강합성거더 단면에서 콘크리트 바닥판의 28일 압축강도는 30~50MPa를 고려하였으며, 콘크리트 재료는 CEB-FIP(1990) 모델로, 일반 강재와 HSB600 및 HSB800 고성능 강재는 탄소성-변형경화 재료로 모델링하였다. 강합성단면의 연성비, 강거더의 강종, 콘크리트 바닥판의 압축강도, 소성중립축의 위치 등이 강합성거더의 연성특성 및 휨저항강도에 미치는 영향을 분석하였다.

Keywords

References

  1. 건설교통부(2010) 도로교설계기준, 한국도로교통협회.
  2. 건설교통부(2010) 하중저항계수설계법에 의한 강구조설계기준, 한국강구조학회.
  3. 김용태, 박순형, 배두병, 윤석구(2008) 고강도 강재를 사용한 Hybrid 합성거더의 정모멘트부 극한 휨거동. 2008년도 한국강구조학회 학술대회 발표집. 한국강구조학회 pp. 112-115.
  4. 김종민, 김재구, 황민오, 강영종(2009) 고강도강 적용 구조물의 극한 거동 연구. 2009년도 대한토목학회 정기학술대회 발표집, 대한토목학회, pp.123-126.
  5. 윤석구, 김용태, 류형근, 배두병(2007) 고성능강재 HSB600을 사용한 Hybrid 합성거더의 극한휨강도 평가. 2007년도 대한토목학회 정기학술대회, 대한토목학회 pp.134-137.
  6. 주현성, 차상호, 최병호, 이학은(2008) 고성능강 적용 교량 부모멘트부의 연성 성능 평가. 2008년도 한국강구조학회 학술대회 발표집, 한국강구조학회, pp.75-76.
  7. 주현성, 차상호, 최병호, 이학은(2009) 고강도 강재를 갖는 교량 부모멘트부의 휨 연성에 대한 연구. 2009년도 대한토목학회 정기학술대회 발표집, 대한토목학회, pp.119-122.
  8. AASHTO (2004) AASHTO LRFD Bridge Design Specifications. 3rd Ed., American Association of State and Highway Transportation Officials. Washington. D.C.
  9. AASHTO (2007) LRFD Bridge Design Specification, 4th Ed., American Association of State and Highway Transportation Officials. Washington. D.C.
  10. Ansourian, P. (1982) Plastic rotation of composite beams. Journal of Structures Div., ASCE, Vol. 108, No. 3. pp.643-659.
  11. AWS (1995) Bridge Welding Code, ANSI/AASHTO/AWS D1.5-95. Joint Publication of American Association of State Highway and Transportation Officials and American Welding Society, pp.239.
  12. Barker, M.G., and Schrage, S.D. (2000) High performance steel: design and cost comparisons. Modern Steel Const., 16, pp.35-41.
  13. Barth, K.E., Righman, J.E., and Freeman, L.B. (2007) Assessment of AASHTO LRFD specifications for Hybrid HPS690W Steel I-Girders. Journal of Bridge Engineering, ASCE, Vol. 12. No. 3, pp.380-388. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(380)
  14. Comite Euro International du Beton (CEB) CEB-FIP Model Code(1990) Thomas Telford, Laussance, Switzerland.
  15. Earls, C.J., and Shah, B.J. (2002) High performance steel bridge girder compactness. Journal of constructional steel research. 58. pp.859-880. https://doi.org/10.1016/S0143-974X(01)00086-4
  16. Green, P.S., Sause, R., and Ricles, J.M. (2002) Strength and ductility of HPS flexural members, Journal of constructional steel research, 58, pp.907-941. https://doi.org/10.1016/S0143-974X(01)00102-X
  17. Hibbit, Kalsson & Sorensen Inc. (2008) ABAQUS / CAE Version 6.8. Standard user's manual. Rhode Island (USA).
  18. Mans, P., Yakel, A.J., and Azizinamini, A. (2001) Full scale testing of conposite plate girders constructed using 485 MPa high performance steel. Journal of Bridge Engineering, ASCE, Vol. 6, No. 6, pp. 598-604. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(598)
  19. Roeder, C.W., Barth, K.E., and Bergman, A. (2004) Effect of live load deflections on steel bridge performance. J. Bridge Eng., Vol. 9, No.3, 259-267. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:3(259)
  20. Sause, R., and Fahnestock, L.A. (2001) Strength and ductility of HPS-100W I-Girders In Negative Flexure. Journal of bridge engineering, Vol. 6, No. 5, 316-323. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:5(316)
  21. Tabsh, S.W., and Nowak, A.S. (1991) Reliability of highway girder bridges. Journal of Structural Engineering, ASCE, Vol. 117, No. 8, pp.2372-2337. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2372)
  22. Vasseghi, A. (1989) Strength and Behavior of Composite Plate Girders under Shear and Bending Moment, Ph. D. Dissertation. The University of Texas-Austin.
  23. Wittry, D.M. (1993) An Analytical Study of the Ductility of Steel-Concrete Composite Sections. MS Thesis. The University of Texas-Austin.
  24. Yakel, A.J., and Azizinamini, A. (2005) Improved moment strength prediction of composite steel plate girders in positive bending. Journal of Bridge Engineering, ASCE, Vol. 10, No. 1, pp.28-38. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:1(28)