Electrosorption Behavior of $TiO_2$/Activated Carbon Composite for Capacitive Deionization

축전식 이온제거에 대한 $TiO_2$/Activated Carbon 화합물의 전기흡착 거동

  • Lee, Jeong-Won (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Kim, Hong-Il (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Kim, Han-Joo (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Park, Soo-Gil (Department of Industrial Engineering Chemistry, Chungbuk National University)
  • Received : 2009.11.10
  • Accepted : 2010.02.25
  • Published : 2010.06.10

Abstract

Desalination effects of capacitive deionization (CDI) process was studied using $TiO_2$/activated carbon electrode. In order to enhance the wettability of electrode and decrease a electrode resistance, $TiO_2$ was coated on activated carbon. By means of $TiO_2$ coating on activated carbon, electric double layer to adsorption content in CDI process was increased. It was identified from TEM, XRD, and XPS that the activated carbon based on $TiO_2$ composite was fabricated successfully by means of sol-gel method. As a results of cyclic voltammetry and impedance, it was identified that $TiO_2$/activated carbon electrode has more electric double later capacitance and less diffusion resistance than activated carbon. Also charge-discharge and ion conductivity profiles showed that the ion removal ratios of $TiO_2$/activated carbon electrode in NaCl electrolyte of $1000\;{\mu}S/cm$ more increased about 39% than that of activated carbon. In conclusion it was possible to identify that the carbon electrode coated $TiO_2$ as electrode material was more effective than raw carbon electrode.

활성탄에 $TiO_2$를 졸-겔 방법으로 코팅하여 탄소복합전극을 제조하였고 축전식 이온제거(Capacitive deionization : CDI) 과정에서 나타난 제염효과에 대하여 고찰하였다. 본 연구에서 $TiO_2$는 전극의 젖음성을 향상시켜 전극과 전해질의 접촉 저항을 감소시키고, 전기이중층 흡착량을 증가시킬 수 있으므로 CDI전극재로 활성탄에 코팅하였다. TEM, XRD, XPS로 활성탄에 $TiO_2$가 코팅되었는지 확인하였다. 순환전류전압법과 impedance측정 결과 탄소복합전극이 탄소전극보다 전기이중층 용량이 증가하였으며, 전극의 확산저항이 줄어든 것을 확인하였다. 또한 이온제거율을 확인하기 위한 충전-방전 및 이온전도도 평가 결과 전해질 NaCl $1000\;{\mu}S/cm$에서 탄소복합전극이 탄소전극보다 39% 더 많은 이온을 제거하는 것을 확인하였다. 본 연구 결과 CDI용 전극재료 $TiO_2$가 코팅된 탄소복합전극이 탄소전극보다 효과적인 제염효과를 보임을 확인하였다.

Keywords

References

  1. J. A. Trainham and J. Newman, J. Electrochem. Soc., 124, 1528 (1977). https://doi.org/10.1149/1.2133106
  2. W. J. Blaedel and J. C. Wang, Anal. Chem., 51, 799 (1979). https://doi.org/10.1021/ac50043a006
  3. M. Matlosz and J. Newman, J. Electrochem. Soc., 133, 1850 (1986). https://doi.org/10.1149/1.2109035
  4. J. C. Farmer, D. V. Fix, G. V. Mark, R. W. Pekala, and J. F. Poco, J. Electrochem. Soc., 143, 159 (1996). https://doi.org/10.1149/1.1836402
  5. A. Porteous, Desalination Technology, Applied Science Publishers, London (1983).
  6. K. S. Spiegler and Y. M. El-Sayed, Desalination, 134, 109 (2001). https://doi.org/10.1016/S0011-9164(01)00121-7
  7. R. V. Perez, M. L. Rodriguez, and J. Mengual, Desalination, 137, 199 (2001). https://doi.org/10.1016/S0011-9164(01)00219-3
  8. J. C. Famer, D. V. Fix, G. V. Mark, R. W. Pekala, and J. F. Poco, J. Appl. Electrochem., 26, 1007 (1996).
  9. T. Hori, M. Hashino, A. Omori, T. Matsuda, K. Takasa, and K. Watanabe, J. Membr, Sci., 132, 203 (1997). https://doi.org/10.1016/S0376-7388(97)00076-8
  10. C. M. Yang, W. H. Choi, B. W. Cho, W. I. Cho, K. S. Yun, and H. S. Han, J. Korea Ind. Eng. Chem., 15, 294 (2004).
  11. J. Wang, L. Angnes, H. Tobias, R. A. Roesner, K. C. Hong, R. S. Glass, F. M. Kong, and R. W. Pekala, Anal. Chem., 65, 2300 (1993). https://doi.org/10.1021/ac00065a022
  12. R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer, J. M. Miller, and B. Dunn, J. Non-Cryst. Solids, 255, 74 (1998).
  13. J. C. Farmer, S. M. Bahowick, J. E. Harrar, D. V. Fix, R. E. Martinelli, A. K. Vu, and K. L. Carroll, Energy & Fuels, 11, 337 (1997). https://doi.org/10.1021/ef9601374
  14. T. J. Welgemoed and C. F. Schutte, Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  15. K. K. Park, J. B. Lee, P. Y. Park, S. W. Yoon, J. S. Moon, H. M. Eum, and C. W. Lee, Desalination, 206, 86 (2007). https://doi.org/10.1016/j.desal.2006.04.051
  16. X. Z. Wang, M. G. Li, Y. W. Chen, R. M. Cheng, S. M. Huang, L. K. Pan, and Z. Sun, Appl. Phys. Lett., 89, 1 (2006).
  17. A. Afkhami and B. E. Conway, J. of Colloid and Interface Science, 251, 248 (2002). https://doi.org/10.1006/jcis.2001.8157
  18. L. Zou, G. Morris, and D. Qi, Desalination, 225, 329 (2008). https://doi.org/10.1016/j.desal.2007.07.014
  19. B. R. Weinberger and R. B. Garber, Appli. Phys. Lett., 66, 2409 (1995). https://doi.org/10.1063/1.113956
  20. Augustynski, J. Electrochem. Acta, 38, 43 (1993). https://doi.org/10.1016/0013-4686(93)80008-N
  21. M. W. Ryoo and G. Seo, Water Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  22. H. Wang, Y. Wu, and B. Q. Xu, Applied catalysis B : Environmental, 59, 139 (2005). https://doi.org/10.1016/j.apcatb.2005.02.001
  23. Y. J. Hwang, S. K. Jeong, J. S. Shin, K. S. Nahm, and A. M. Stephan, Journal of Alloys and Compounds, 448, 141 (2008). https://doi.org/10.1016/j.jallcom.2006.10.036
  24. X. H. Xia, Z. J. Jia, Y. Yu, Y. Liang, Z. Wang, and L. L. Ma, Carbon, 45, 717 (2007). https://doi.org/10.1016/j.carbon.2006.11.028
  25. T. Takahagi and A. Ishitani, Carbon, 22, 43 (1984). https://doi.org/10.1016/0008-6223(84)90131-3
  26. M. C. Paiva, C. A. Bernardo, and M. Nardin, Carbon, 38, 1323 (2000). https://doi.org/10.1016/S0008-6223(99)00266-3
  27. C. Wagner and G. Muilenbergy (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota (1979).
  28. F. M. Liu and T. M. Wang, Appl. Surf. Sci., 195, 284 (2002). https://doi.org/10.1016/S0169-4332(02)00569-X
  29. S. Biniak, G. Szymanski, J. Siedlewski, and A. Swiatkowski, Carbon, 35, 1799 (1997). https://doi.org/10.1016/S0008-6223(97)00096-1
  30. J. G. Yu, X. J. Zhao, and Q. N. Zhou, Thin Solid Films, 379, 7 (2000). https://doi.org/10.1016/S0040-6090(00)01542-X
  31. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  32. Y. M. Kim, J. of the Korean Society of Analyrical Sciences, (1992).
  33. M. Mullier and B. Kastening, J. Electroanal. Chem., 374, 149 (1994). https://doi.org/10.1016/0022-0728(94)03372-2
  34. H. Shi, Electrochimica Acta, 39, 2083 (1994). https://doi.org/10.1016/0013-4686(94)85092-5
  35. I. Tanahashi, A. Yoshida, and A. Nishino, J. Electrochem. Soc., 137, 3052 (1990). https://doi.org/10.1149/1.2086158
  36. A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons Inc., 522, New York (1980).
  37. C. H. Hou, C. Liang, S. Yiacoumi, S. Dai, and C. Tsouris, J. of Colloid and Interface Science, 302, 54 (2006). https://doi.org/10.1016/j.jcis.2006.06.009
  38. Q. Shen, S. K. You, S. G. Park, H. Jiang, D. Guo, B. Chen, and X. Wang, Electroanalysis, 20, 2526 (2008). https://doi.org/10.1002/elan.200804351
  39. J. Xie, X. B. Zhao, G. S. Cao, and M. J. Zhao, Electrochem. Acta, 50, 2725 (2004).
  40. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011