PMMA 고분자 입자를 템플릿으로 이용한 실리카 중공체의 제조

Synthesis of Hollow Silica Using PMMA Particle as a Template

  • 황하수 (한국생산기술연구원 패키징기술센터) ;
  • 조계민 (한국생산기술연구원 패키징기술센터) ;
  • 박인 (한국생산기술연구원 패키징기술센터)
  • Hwang, Ha-Soo (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Cho, Kye-Min (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Park, In (Korea Packaging Center, Korea Institute of Industrial Technology)
  • 투고 : 2010.02.03
  • 심사 : 2010.02.25
  • 발행 : 2010.06.10

초록

양이온성의 2,2'-azobis(2-methylpropionamidine) (AIBA) 개시제를 이용한 methylmethacrylate (MMA)의 무유화제 에멀전 중합을 통해 polymethylmethacrylate (PMMA) 입자를 합성하였다. 스퇴버 방법을 이용하여 양이온성의 PMMA 입자 표면에 실리카를 코팅하였다. 음전하의 실리카 전구체는 양이온성의 PMMA 입자 표면과의 정전기적 인력에 의해 코팅된다. 실리카 코팅 과정 중에 PMMA 입자가 용해되어 후처리 없이 실리카 중공체를 얻을 수 있었다.

Poly(methyl methacrylate) (PMMA) particles were prepared by soap-free emulsion polymerization of MMA in the presence of a cationic initiator, 2,2'-azobis(2-methylpropionamidine) (AIBA). The Stober method has been adopted to coat silica on the surface of these cationic particles. Negatively charged silica precursors were coated onto cationic particle surfaces by electronic interaction. During the coating process, hollow particles were directly obtained by dissolution of PMMA.

키워드

참고문헌

  1. J. Yang, J. Lee, J. Kang, K. Lee, J. S. Suh, H. G. Yoon, Y. M. Huh, and S. Haam, Langmuir, 24, 3417 (2008). https://doi.org/10.1021/la701688t
  2. P. M. Arnal, M. Comotti, and F. Schuth, Angew. Chem. Int. Ed., 45, 8224 (2006). https://doi.org/10.1002/anie.200603507
  3. X. Xu and S. A. Asher, J. Am. Chem. Soc., 126, 7940 (2004). https://doi.org/10.1021/ja049453k
  4. F. Caruso, R. A. Caruso, and H. Mohwald, Science, 282, 1111 (1998). https://doi.org/10.1126/science.282.5391.1111
  5. Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker, and C. J. Brinker, Nature, 398, 223 (1999). https://doi.org/10.1038/18410
  6. P. J. Bruinsma, A. Y. Kim, J. Liu, and S. Baskaran, Chem. Mater., 9, 2507 (1997). https://doi.org/10.1021/cm970282a
  7. D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, Chem. Mater., 18, 614 (2006). https://doi.org/10.1021/cm0512979
  8. J.-H. Park, C. Oh, S. I. Shin, S.-K. Moon, and S.-G. Oh, J. Coll. Inter. Sci., 266, 107 (2003). https://doi.org/10.1016/S0021-9797(03)00645-3
  9. B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Battes, D. E. Discher, and D. A. Hammer, Science, 284, 1143 (1999). https://doi.org/10.1126/science.284.5417.1143
  10. V. D. Gordon, X. Chen, J. W. Hutchinson, A. R. Bausch, M. Marquez, and D. A. Weitz, J. Am. Chem. Soc., 126, 14117 (2004). https://doi.org/10.1021/ja0474749
  11. F. Caruso, H. Lichtenfeld, M. Giersig, and H. Mohwald, J. Am. Chem. Soc., 120, 8523 (1998). https://doi.org/10.1021/ja9815024
  12. I. Park, S. H. Ko, Y. S. An, K. H. Choi, H. Chun, S. Lee, and G. Kim, J. Nanosci. Nanotechnol., 9, 7224 (2009).
  13. M. Chen, S. Zhou, B. You, and L. Wu, Macromolecules, 38, 6411 (2005). https://doi.org/10.1021/ma050132i
  14. A. Schmid, S. Fujii, S. P. Armes, C. A. P. Leite, F. Galembeck, H. Minami, N. Saito, and M. Okubo, Chem. Mater., 19, 2435 (2007). https://doi.org/10.1021/cm062314c
  15. T. Tanrisever, O. Okay, and I. Soenmezoglu, J. Appl. Polym. Sci., 61, 485 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<485::AID-APP11>3.0.CO;2-0
  16. M. Chen, L. Wu, S. Zhou, and B. You, Adv. Mater., 18, 801 (2006). https://doi.org/10.1002/adma.200501528