CNT가 함유된 전자파 차폐흡수시트의 제조 및 전자파 차폐특성

Preparation of Sheet with CNT for EMI Shielding and Its EMI Shielding Property

  • 채성정 (계명대학교 재료공학과) ;
  • 조범래 (계명대학교 재료공학과) ;
  • 홍병표 (계명대학교 화학시스템공학과) ;
  • 이병수 (계명대학교 기계자동차공학과) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Chae, Seong-Jeong (Department of Materials Engineering, Keimyung University) ;
  • Cho, Bum-Rae (Department of Materials Engineering, Keimyung University) ;
  • Hong, Byung-Pyo (Department of Chemical System Engineering, Keimyung University) ;
  • Lee, Byoung-Soo (Department of Mechanical and Automotive Engineering, Keimyung University) ;
  • Byun, Hong-Sik (Department of Chemical System Engineering, Keimyung University)
  • 투고 : 2010.04.01
  • 심사 : 2010.05.27
  • 발행 : 2010.08.10

초록

금속분말에 바인더, methyl ethyl ketone (MEK), cyclohexanone을 혼합한 슬러리를 이용하여 전자파 차폐용 시트를 제조하였으며, 이때 전기전도성이 높은 carbon nanotube (CNT)를 첨가하여 차폐효율을 증가시키고자 하였다. 제조된 시트는 주사전자현미경(SEM)과 energy dispersive spectroscopy (EDS)를 이용하여 표면분석과 성분분석을 실시하였다. 시트의 전기적 특성과 차폐효율은 4-Point Probe와 전자파차폐효율측정기를 이용하여 측정하였다. 전기저항은 CNT를 2% 첨가한 시트가 $13.13{\Omega}{\cdot}cm$로 가장 낮은 값을 나타내었으며, 전자파 차폐 효율 역시 CNT를 2%첨가한 시트가 63 dB로 가장 높은 값을 가지는 것으로 평가되었다.

The sheet for electromagenetic interference (EMI) shielding was prepared with slurry made by the mixture of binder, methyl ethyl ketone, cyclohexanone and metal powder. We tried to enhance the shielding efficiency by adding carbon nanotube (CNT), which has known as highly conducting material. Surface and component analyses were carried out with SEM and EDS, respectively. The electric characteristics and EMI shielding efficiencies were measured with 4-point probe measurement and EMI efficiency measurement equipment. The sheet with 2% CNT addition showed the lowest electrical resistance, $13.13{\Omega}}{\cdot}cm$. It also showed the highest EMI shielding efficiency of 63 dB.

키워드

참고문헌

  1. K. T. Chung, A. Sabo, and A. P. Pica, J. Appl. Phys., 53, 6867 (1982). https://doi.org/10.1063/1.330027
  2. S. W. Byun and S. S. Im, J. Appl. Polym. Sci., 56, 425 (1995). https://doi.org/10.1002/app.1995.070560403
  3. I. Tosiyaki, JETI, 50, 119 (2002).
  4. Y. Washino, Electromagnetic, 11, Toray Research Center, Tokyo (1993).
  5. Y. K. Lee and J. C. Cho, Mechanical Technology, 78, 34 (1993).
  6. S. T. Shinn and Y. C. Fa, Mat. Sci. and Eng., 32, 258 (2001).
  7. P. Chandrasekhar and K. Naishadham, Synth. Met, 105, 115 (1999). https://doi.org/10.1016/S0379-6779(99)00085-5
  8. J. Joo and A. J. Epstein, J. Am. EMI. Soc., 6, 140 (1995).
  9. K. H. Lee, Y. D. Kim, M. H. Lee, B. H. Min, and J. H. Kim, J. Korean Ind. Eng. Chem., 20, 493 (2009).
  10. J. W. Choi, K. G. Lee, S. H. Hwang, J. Y. Kim, S. W. Lee, and W. S. Huh, J. Korean Ind. Eng. Chem., 19, 413 (2008).
  11. J. P. Parneix and M. El. Kadiri, Springer Series in Solid State Science, 71, 183 (1987).
  12. S. H. Park, D. I. Kim, D. H. Choi, and S. Y. Kim, J. EM. Soc., 19, 1051 (2008).
  13. K. B. Choi, E. M. Goh, and K. I. Ahn, J. Kor. Ins. Chem. Eng, 33, 521 (1995).
  14. Y. H. Lee, The World of High-tech and physics, 24, Seoul (2003).