Preparation of EMI Shielding Sheet by PVD Method and Its Characteristic of EMI Shielding Efficiency

PVD법을 이용한 전자파 차폐용 시트 제조 및 차폐효율 특성

  • Chae, Seong-Jeong (Department of Material Engineering, Keimyung University) ;
  • Hong, Byung-Pyo (Department of Chemical System Engineering, Keimyung University) ;
  • Lee, Byoung-Soo (Department of Mechanical Engineering, Keimyung University) ;
  • Byun, Hong-Sik (Department of Chemical System Engineering, Keimyung University)
  • 채성정 (계명대학교 신소재공학과) ;
  • 홍병표 (계명대학교 화학시스템공학과) ;
  • 이병수 (계명대학교 기계자동차공학과) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Received : 2010.05.11
  • Accepted : 2010.06.24
  • Published : 2010.10.10

Abstract

The optimized sheet for EMI shielding was prepared by metal power with Fe series. Then various metal powders were deposited on the sheet by PVD method. Moreover, the PVdF nanofiber membrane was used to compare the characteristic of EMI shielding efficiency of various metal powders. The electrical property was measured by the 4-point probe method. The result from EDS confirmed that the metal powder existed on the sheet. EMI shielding efficiency was analysed by EMI shielding measurement apparatus. The lowest electrical resistance, $641.95{\Omega}{wcdot}cm$, was obtained with $1000\;{\AA}$ deposition of Cu on the sheet. It was revealed that the EMI shielding efficiency increased with increase of the metal deposition thickness. The sheet deposited by Cu with $1000\;{\AA}$ showed the highest EMI shielding efficiency, 32.5 dB.

Fe계 metal powder를 이용하여 최적화된 전자파차폐 시트를 제조한 후, 제조된 시트에 physical vapor deposition (PVD)법으로 여러 금속들을 증착시켜 최종 전자파차폐용 시트를 제조하였다. 또한 증착된 금속들의 전자파 효율 특성을 분석하기 위하여 polyvinylidene fluoride (PVdF) 나노섬유 막을 시트로 활용하였다. 전기적 특성을 알아보기 위해 4-point probe로 측정하였으며, energy dispersive spectroscopy (EDS)를 이용하여 제조된 sheet에 금속이 증착되었음을 확인하였다. 차폐효율은 전자파차폐효율측정기를 이용하여 측정하였다. 전기저항은 $1000\;{\AA}$일 때 Cu에서 $641.95{\Omega}{\cdot}cm$로 가장 낮은 저항 값을 나타내었다. 전자파 차폐효율은 증착된 금속의 두께의 증가에 따라 증가되었으며, Cu가 $1000\;{\AA}$으로 증착된 sheet가 최고 효율인 32.5 dB을 나타내었다.

Keywords

References

  1. K. T. Chung, A. Sabo, and A. P. Pica, J. Appl. Phys., 53, 6867 (1982). https://doi.org/10.1063/1.330027
  2. B. Bridge, J. Mat. Sci. Lett., 7, 633 (1988). https://doi.org/10.1007/BF01730318
  3. S. S. Tzeng and F. Y. Chang, Mat. Sci. and Eng., 302, 258 (2001). https://doi.org/10.1016/S0921-5093(00)01824-4
  4. B. Bridge, M. J. Folkes, and H. Jahankhani, J. Mat. Sci., 23, 1948 (1988). https://doi.org/10.1007/BF01115755
  5. J. S. Kim and Y. T. Jeong, J. Kor. Sci. Precision. Eng., 24, 7 (2007).
  6. S. H. Park, D. I. Kim, D. H. Choi, and S. Y. Kim, J. EM. Soc., 19, 1051 (2008).
  7. K. Ishino and Y. Narumiya, Am. Ceram. Soc. Bull., 66, 1469 (1987).
  8. W. S. Chin and D. G. Lee, J. of the KSCM, 17, 68 (2004).
  9. H. C. Chen, K. C. Lee, and J. H. Lin, Composites Part A, 35, 1249 (2004). https://doi.org/10.1016/S1359-835X(04)00119-8
  10. K. B. Choi, E. M. Goh, and K. I. Ahn, J. Kor. Ins. Chem. Eng, 33, 521 (1995).