Circulating Fluidized Bed Combustion of Korean Anthracite and Fabricated Anthracite Fines

국내 무연탄과 미분을 성형한 무연탄의 순환유동층 연소

  • Shun, Do-Won (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Bae, Dal-Hee (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Oh, Chang-Sup (Reseat Program, Korea Institute of Science and Technology Information) ;
  • Kim, Heon-Chang (Department of Chemical Engineering, Hoseo University)
  • 선도원 (한국에너지기술연구원 온실가스연구단) ;
  • 배달희 (한국에너지기술연구원 온실가스연구단) ;
  • 오창섭 (한국과학기술정보연구원) ;
  • 김헌창 (호서대학교 화학공학과)
  • Received : 2010.07.08
  • Accepted : 2010.08.03
  • Published : 2010.10.10

Abstract

To solve the problems of the low combustion activity of Korean anthracite and the abundant loss of unburned carbon in fly ash, pellet coal was fabricated from coal fines and fly ash, and the mixed combustion of coarse coal with the pellet coal was examined in the circulating fluidized bed combustor of a 0.1 MW scale test unit. In the combustion of the raw coal only, the significant amount of coal fines was entrained, resulting in overheat at the top of the combustor. With the coarse coal that most fines were eliminated, however, the combustion temperature was maintained stable. The mixed combustion of coarse and raw coals was also feasible even though it often went unstable. The mixed combustion of the coarse coal with the pellet coal was as stable as the coarse coal combustion, showing a promise that the combustion of the Korean anthracite in commercial circulating fluidized bed boilers could be further enhanced.

순환유동층에서 나타나는 국내 무연탄의 낮은 연소성을 극복하고 비산재로 배출되는 미연분의 손실을 극복하기 위하여 분탄과 비산회를 혼합하여 성형한 성형탄과 무연탄의 혼소를 0.1 MW급 순환유동층에서 수행하였다. 비교 시험에서 원탄 연소는 다량의 미분의 비산과 연소로 상부에서의 과열을 일으켰으나 조립탄 연소의 경우 미분을 제거하였으므로 일정한 온도에서 연소되었고 운전이 가장 안정적이었다. 조립탄과 원탄이 혼합된 석탄은 다소 운전이 불안하였으나 원탄만을 연소시킬 때보다는 안정적 연소가 가능하였다. 조립탄에 성형탄을 혼합한 경우 조립탄 연소의 경우와 같이 원활한 운전이 가능하였다. 본 연구는 상용 순환유동층 보일러에서 성형탄 혼소가 국내 무연탄의 연소성 개선에 도움이 됨을 보여 주었다.

Keywords

References

  1. D. W. Shun, D. H. Bae, G. T. Jin, C. K. Yi, J. H. Park, H. J. Ryu, K. H. Han S. H. Jo, and S. Y. Lee, Development of Circulating Fluidized Bed Cogeneration System for RDF, KIER Report KIER-A64308 (2003-N-WA02-P-01-0-000), Korea Institute of Energy Research, Daejon (2007).
  2. D. W. Shun, J. E. Son, K. H. Han, D. H. Bae, S. H. Cho, and J. H. Choi, Development of Circulating Fluidized Bed Coal Boiler Technology (III), Report KE-93040G, Korea Institute of Energy Research, Daejon (1993).
  3. D. W. Shun, D. H. Bae, K. H. Han, J. E. Son, Y. Kang, Y. H. Wee, J. S. Lee, and P. S. Ji, Hwahak Konghak, 34, 321 (1996).
  4. J. M. Lee, D. W. Kim, J. S. Kim, J. J. Kim, and H. S. Kim, Korean Chem. Eng. Res., 44, 489 (2006).
  5. H. T. Jang, T. S. Park, and S. C. Hong, J. Korean Ind. Eng. Chem., 10, 586 (1999)
  6. D. W. Shun, D. H. Bae, K. H. Han, S. H. Cho, and S. Y. Lee, Hwahak Konghak, 40, 345 (2002).
  7. A. K. Kolar and R. Sundaresan, Int. J. Therm. Sci., 41, 674 (2002).
  8. Y. J. Cho, R. W. Namkung, and S. D. Kim, J. Chem. Eng. Japan, 27, 158 (1994). https://doi.org/10.1252/jcej.27.158
  9. J. K. Yun, D. W. Shun, D. H. Bae, H. S. Lee, D. K. Lee, Y. J. Choi, and K. H. Moon, Korean Chem. Eng. Res., 42, 458 (2004).
  10. D. W. Shun, D. H. Bae, K. H. Han, J. E. Son, and K. Cen, Hwahak Konghak, 37, 925 (1999).
  11. D. W. Shun, D. H. Bae, K. H. Han, S. Y. Lee, and D. H. Park, J. Korea Society of Waste Management, 20, 509 (2003).
  12. J. H. Choi, J. E. Son, K. H. Han, D. H. Bae, and S. H. Jo, Development of Circulating Fluidized Bed Coal Boiler Technology (I), KIER Report KE-91009G, Korea Institute of Energy Research, Daejon (1991).