DOI QR코드

DOI QR Code

Thermal and Electronic Properties of Exfoliated Metal Chalcogenides

  • Kim, Jong-Young (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Soon-Mok (Green Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Won-Seon (Green Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Woo-Seok (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2010.07.05
  • Accepted : 2010.09.09
  • Published : 2010.11.20

Abstract

The thermal conductivity of layered metal chalcogenides such as $MT_2$ (M = Mo, W; T = S, Se) shows a marked decrease after exfoliation and subsequent restacking process. Random stacking of two-dimensional crystalline sheets circumvents thermal conduction pathways along a longitudinal direction, which results in a reduction in thermal conductivity. $WS_2$ and $WSe_2$ compounds retain p-type conducting behavior after exfoliation and restacking with decreased electrical conductivity due to the change in carrier concentration. $MoSe_2$ compound exhibits metallic behavior < $130^{\circ}C$ with a small Seebeck coefficient, which results from metastable 1T-$MoSe_2$ structure of the restacked phase.

Keywords

References

  1. Tritt, T. M. Science 1999, 283, 804. https://doi.org/10.1126/science.283.5403.804
  2. Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Science 2002, 297, 2229. https://doi.org/10.1126/science.1072886
  3. Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163. https://doi.org/10.1038/nature06381
  4. Chiritescu, C.; Cahill, D. G.; Nguyen, N.; Johnson, D.; Bodapati, A.; Keblinski, P.; Zschack, P. Science 2007, 315, 351. https://doi.org/10.1126/science.1136494
  5. Tsai, H.; Heising, J.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M. G. J. Amer. Chem. Soc. 1997, 9, 879.
  6. Bolgar, A. S.; Trofimova, Z. A.; Yanaki, A. A. Powder Metall. Met. Ceram. 1990, 29, 382.; Blinder, A. V.; Bolgar, A. S.; Trofimova, Z. A. Powder Metall. Met. Ceram. 1993, 32, 234.
  7. Dungey, K. E.; Curtis, M. D.; Penner-Hahn, J. E. Chem. Mater. 1998, 10, 2152; Heising, J.; Kanatzidis, M. G. J. Amer. Chem. Soc. 1999, 121, 11720. https://doi.org/10.1021/ja991644d

Cited by

  1. Enhanced thermoelectric properties of tungsten disulfide-multiwalled carbon nanotube composites vol.22, pp.40, 2012, https://doi.org/10.1039/c2jm34510b
  2. Two-Dimensional Molybdenum Trioxide and Dichalcogenides vol.23, pp.32, 2013, https://doi.org/10.1002/adfm.201300125
  3. 2D Crystals vol.7, pp.2, 2013, https://doi.org/10.1021/nn303973r
  4. As an Excellent High-Temperature Thermoelectric Material vol.26, pp.22, 2014, https://doi.org/10.1021/cm503487n
  5. Characterization of Cu(In,Ga)Se$_{2}$ Electrodeposited and Co-Evaporated Devices by Means of Concentrated Illumination vol.4, pp.2, 2014, https://doi.org/10.1109/JPHOTOV.2013.2293889
  6. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition vol.5, pp.2041-1723, 2014, https://doi.org/10.1038/ncomms4087
  7. Q-switched fiber laser based on transition metal dichalcogenides MoS_2, MoSe_2, WS_2, and WSe_2 vol.23, pp.20, 2015, https://doi.org/10.1364/OE.23.026723
  8. Using Refined Optothermal Raman Technique vol.7, pp.46, 2015, https://doi.org/10.1021/acsami.5b08580
  9. Electric-Field-Assisted Directed Assembly of Transition Metal Dichalcogenide Monolayer Sheets vol.10, pp.5, 2016, https://doi.org/10.1021/acsnano.5b03114
  10. Bandgap Restructuring of the Layered Semiconductor Gallium Telluride in Air vol.28, pp.30, 2016, https://doi.org/10.1002/adma.201601151
  11. Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping vol.4, pp.26, 2016, https://doi.org/10.1039/C6TA03122F
  12. Elastic and thermal properties of free-standing molybdenum disulfide membranes measured using ultrafast transient grating spectroscopy vol.5, pp.8, 2017, https://doi.org/10.1063/1.4999225
  13. Effect of anion and cation substitution in tungsten disulfide and tungsten diselenide on conductivity and thermoelectric power vol.51, pp.6, 2017, https://doi.org/10.1134/S1063782617060288
  14. Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery vol.7, pp.11, 2017, https://doi.org/10.1002/aenm.201602567
  15. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors vol.9, pp.4, 2017, https://doi.org/10.1007/s40820-017-0152-6
  16. Tunable electron and phonon properties of folded single-layer molybdenum disulfide pp.1998-0000, 2018, https://doi.org/10.1007/s12274-017-1770-5
  17. Enhanced thermal transport across monolayer MoS2 pp.1998-0000, 2017, https://doi.org/10.1007/s12274-017-1835-5
  18. WS2-Clad Microfiber Saturable Absorber for High-Energy Rectangular Pulse Fiber Laser vol.24, pp.3, 2018, https://doi.org/10.1109/JSTQE.2017.2757142
  19. vol.23, pp.1, 2014, https://doi.org/10.1088/1674-1056/23/1/017201
  20. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect vol.116, pp.23, 2014, https://doi.org/10.1063/1.4904513
  21. Tungsten diselenide Q-switched erbium-doped fiber laser vol.55, pp.8, 2016, https://doi.org/10.1117/1.OE.55.8.081306
  22. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures vol.7, pp.1, 2017, https://doi.org/10.1038/srep46211
  23. saturable absorber vol.15, pp.8, 2018, https://doi.org/10.1088/1612-202X/aac29e
  24. (X: S, Se and Te) nanoscrolls vol.10, pp.17, 2018, https://doi.org/10.1039/C7NR08634B
  25. Phonon scattering processes in molybdenum disulfide vol.114, pp.5, 2019, https://doi.org/10.1063/1.5082932
  26. An Effective Method for the Fabrication of Few‐Layer‐Thick Inorganic Nanosheets vol.124, pp.36, 2012, https://doi.org/10.1002/ange.201204208
  27. An Effective Method for the Fabrication of Few‐Layer‐Thick Inorganic Nanosheets vol.51, pp.36, 2012, https://doi.org/10.1002/anie.201204208
  28. High pressure effect on structure, electronic structure, and thermoelectric properties of MoS2 vol.113, pp.1, 2010, https://doi.org/10.1063/1.4772616
  29. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 vol.89, pp.3, 2010, https://doi.org/10.1103/physrevb.89.035438
  30. Scanning photocurrent microscopy reveals electron-hole asymmetry in ionic liquid-gated WS2 transistors (4 pages) vol.104, pp.17, 2014, https://doi.org/10.1063/1.4872002
  31. Experimental Evidence for Dark Excitons in Monolayer $ \mathrm{WSe}_{2}$ vol.115, pp.25, 2010, https://doi.org/10.1103/physrevlett.115.257403
  32. Thermal conductivity of bulk and monolayer MoS 2 vol.113, pp.3, 2016, https://doi.org/10.1209/0295-5075/113/36002
  33. Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers vol.94, pp.1, 2010, https://doi.org/10.1103/physrevb.94.014312
  34. Thermoelectric properties of WS2nanotube networks vol.10, pp.1, 2010, https://doi.org/10.7567/apex.10.015001
  35. Control of Electrical and Thermal Transport Properties by Hybridization of Two-Dimensional Tungsten Disulfide and Reduced Graphene Oxide for Thermoelectric Applications vol.6, pp.11, 2010, https://doi.org/10.1021/acssuschemeng.8b03949
  36. Thermal Conductivity Enhancement in $ \mathrm{MoS}_{2}$ under Extreme Strain vol.122, pp.15, 2010, https://doi.org/10.1103/physrevlett.122.155901
  37. Quasi-Ballistic Thermal Transport Across MoS2 Thin Films vol.19, pp.4, 2010, https://doi.org/10.1021/acs.nanolett.8b05174
  38. Phonon Anharmonicity of Tungsten Disulfide vol.123, pp.41, 2019, https://doi.org/10.1021/acs.jpcc.9b07553
  39. The valley Nernst effect in WSe2 vol.10, pp.1, 2019, https://doi.org/10.1038/s41467-019-13590-8
  40. Enhanced Thermoelectric Properties of WS2/Single-Walled Carbon Nanohorn Nanocomposites vol.10, pp.2, 2010, https://doi.org/10.3390/cryst10020140
  41. Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductors vol.14, pp.2, 2020, https://doi.org/10.1021/acsnano.9b09839
  42. Thermoelectric Properties of Monolayer MoS2 in the Presence of Magnetic Field and Electron/Hole Doping by Using the Holstein Model vol.9, pp.7, 2010, https://doi.org/10.1149/2162-8777/abb28b
  43. Advanced Strategies to Improve Performances of Molybdenum-Based Gas Sensors vol.13, pp.1, 2021, https://doi.org/10.1007/s40820-021-00724-1
  44. Interface driven energy-filtering and phonon scattering of polyaniline incorporated ultrathin layered molybdenum disulphide nanosheets for promising thermoelectric performance vol.584, pp.None, 2010, https://doi.org/10.1016/j.jcis.2020.09.061
  45. Thermal conductivity of the quasi-one-dimensional materials $ \mathrm{TaSe}_{3}$ and $ \mathrm{ZrTe}_{3}$ vol.5, pp.3, 2010, https://doi.org/10.1103/physrevmaterials.5.034010
  46. Thermal conductivity of short tungsten disulfide nanotubes: A molecular dynamics study vol.129, pp.23, 2010, https://doi.org/10.1063/5.0054657
  47. Boosting Thermoelectric Performance of 2D Transition-Metal Dichalcogenides by Complex Cluster Substitution: The Role of Octahedral Au6 Clusters vol.4, pp.11, 2010, https://doi.org/10.1021/acsaem.1c01777
  48. Induced 2H-Phase Formation and Low Thermal Conductivity by Reactive Spark Plasma Sintering of 1T-Phase Pristine and Co-Doped MoS2 Nanosheets vol.6, pp.48, 2021, https://doi.org/10.1021/acsomega.1c04646