Estimation of Carbon Storage Using Mean Biomass Density in Korean Forests

  • Li, Xiaodong (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Yi, Myong-Jong (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Jeong, Mi-Jeong (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Son, Yo-Whan (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Jin, Guangze (School of Forestry Northeast Forestry University) ;
  • Han, Sang-Sub (College of Forest and Environmental Sciences, Kangwon National University)
  • Received : 2010.03.31
  • Accepted : 2010.05.10
  • Published : 2010.10.30

Abstract

This study examined the biomass data estimated from different allometric models and calculated the mean aboveground biomass, mean belowground biomass and root/shoot ratio values according to the forest types and age classes. These mean values and the forest inventories in 2009 were used to estimate the aboveground and total biomass carbon storage in different forest types (coniferous, deciduous and mixed forests). The aboveground and total biomass carbon storage for all forest types in Korea were 350.201 Tg C and 436.724 Tg C. Over the past 36 years, plantations by reforestation programs have accounted for more than 70% of the observed carbon storage. The carbon storage in Korean forest biomass was 436.724 Tg C, of which 175.154 Tg C for coniferous forests, 126.772 Tg C for deciduous forests and 134.518 Tg C for mixed forests, comprising approximately 1/20 of the total carbon storage of the East Asian countries. The total carbon storage for the whole forest sector in Korea was 1213.122 Tg C, of which 436.724 Tg C is stored in forest biomass if using the ratio of carbon storage in different pools examined from the United States. Such large carbon storage in Korean forests is due mainly to active plantations growth and management practices.

Keywords

References

  1. Choi, S.-D., Lee, K. and Chang, Y.-S. 2002. Large rate of uptake of atmospheric carbon dioxide by planted forest biomass in Korea. Global Biogeochemical Cycles 16(4), 1089, doi: 10.1029/2002GB001914.
  2. Choi, Y.C. and Park, I.H. 1993. Biomass and net production of a natural Quercus variabilis forest and a Populus alba ${\times}$ P. glandulosa Plantation at Mt. Mohu area in Chonnam. Journal of Korean Forest Society 82(2): 188- 194.
  3. Fang, J.Y., Chen, A.P., Peng, C., Zhao, S.Q. and Ci, L.J. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292: 2320-2322. https://doi.org/10.1126/science.1058629
  4. Fang, J.Y., Oikawa, T., Kato, T., Mo, W. and Wang, Z.H. 2005. Biomass carbon accumulation by Japan's forests from 1947 to 1995. Global Biogeochemical Cycles 19, GB2004, doi: 10.1029/2004GB002253.
  5. FAO. 2006. Global Forest Resources Assessment 2005, Main Report. FAO Forestry Paper 147, Annex 3 Global tables, FAO, Rome.
  6. Fang, J.Y., Brown, S., Tang,Y.H., Nabuurs, G.J., Wang, X.P. and Shen, H.H. 2006. Overestimated biomass carbon pools of the northern mid- and high latitude forests. Climatic Change 74: 355-368. https://doi.org/10.1007/s10584-005-9028-8
  7. Goodale, C.L., Apps, M.J., Birdsey, R.A., Field, C.B., Heath, L.S., Houghton, R.A., Jenkins, J.C., Kohlmaier, G.H., Kurz, W., Liu, S., Nabuurs, G.-J., Nilsson, S. and Shvidenko, A.Z. 2002. Forest carbon sinks in the Northern Hemisphere. Ecological Applications 12: 891-899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2
  8. Houghton, R.A. 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology 11: 945-958. https://doi.org/10.1111/j.1365-2486.2005.00955.x
  9. Hwang, J.H., Lee, S.T., Kim, B.B., Shin, H.C., Lee, K.J. and Park, K.J. 2005. Estimation of aboveground biomass and belowground Nutrient contents for a Phyllostachys pubescens stand. Journal of Korean Forest Society 94(3): 161-167.
  10. Janssens, I.A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-J., Folberth, G., Schlamadinger, B., Hutjes, R.W.A., Ceulemans, R., Schulze, E.D., Valentini, R. and Dolman, A.J. 2003. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic $CO_{2}$ emission. Science 300: 1538-1542. https://doi.org/10.1126/science.1083592
  11. Kim, S.K. and Jeong, J.Y. 1985. A study on the production structure and biomass productivity of Quercus variabilis natural forest. Journal of Korean Forest Society 70: 91-102.
  12. Kim, J.-S., Son, Y.H., Lim, J.-H. and Kim, Z.-S. 1996. Aboveground biomass, N and P distribution, and litterfall in Pinus rigida and Larix leptolepis plantations. Journal of Korean Forest Society 85(3): 416-425.
  13. Korea Forest Service. 2000. Forest basic statistical survey guideline, Seoul, Republic of Korea.
  14. Kwon, K.-C. and Lee, D.K. 2006a. Biomass and annual net production of Quercus mongolica stands in Mt. Joongwang with respect to altitude and aspect. Journal of Korean Forest Society 95(4): 398-404.
  15. Kwon, K.-C. and Lee, D.K. 2006b. Above- and belowground biomass and energy content of Quercus mongolica. Journal of Korean Forest Energy Society 25(1): 31-38.
  16. Kwon, K.-C. and Lee, D.K. 2006c. Biomass and energy content of Quercus mongolica stands in Gwangyang and Jeju areas. Journal of Korean Wood Science Society 34(4): 54-65.
  17. Kwon K-C and Lee DK (2006d) Biomass and energy content of Pinus rigida stand in Gwangju, Gyeonggi province. Journal of Korean Forest Energy Society 25(1): 39-45.
  18. Kwon, K.-C. and Lee, D.K. 2006e. Biomass and energy content of Pinus koraiensis stand planted in Mt. Wolak. Journal of Korean Wood Science Society 34(4): 66-75.
  19. Kim, D.H. 2008. Biomass, carbon and nitrogen storage in an age-sequence of Larix leptolepis stands in Korea. Dissertation, Korea University.
  20. Lee, S.W. 1985. Biomass and net primary productivity of Pinus densiflora natural ecosystem in Kangwon, Korea. Journal of Korean Forest Society 71: 74-81.
  21. Lee, K.J., Kim, K.D., Kim, J.S. and Park, I.H. 1985. Distribution of biomass and production of Pinus rigida and Pinus rigidaxtaeda plantation in Kwangju district. Journal of Korean Forest Society 69: 28-35.
  22. Lee, K.J. and Park, I.H. 1987. Primary production and nutrients distribution in 22-year-old Pinus koraiensis and Quercus mongolica stands in Kwangju. Journal of Korean Forest Energy Society 7(1): 11-21.
  23. Liski, J., Korotkov, A.V., Prins, C.F.L., Karjalainen, T., Victor, D.G. and Kauppi, P.E. 2003. Increased carbon sink in temperate and boreal forests. Climatic Change 61: 89-99. https://doi.org/10.1023/A:1026365005696
  24. Lee, D.H. 2004. Estimating above- and below-ground biomass from diameter of breast height and height for the Pinus densiflora Sieb. et Zucc. Journal of Korean Forest Society 93(3): 242-250.
  25. Lee, W.K., Gadow, K.V., Chung, D.J., Lee, J.L. and Shin, M.Y. 2004. DBH growth for Pinus densiflora and Quercus variabilis mixed forests in central Korea. Ecological Modelling 176: 187-200. https://doi.org/10.1016/j.ecolmodel.2003.11.012
  26. Lee, D.K. and Kwon, K.-C. 2006. Biomass and net primary production of Quercus mongolica stands in Pyungchang and Jecheon areas. Journal of Korean Forest Society 95(3): 309-315.
  27. Lee, D.K., Kim, Y.-S. and Kwon, K.-C. 2006. Biomass and energy content of Pinus densiflora stand in Mt. Wolak, Chungbuk province. Journal of Korean Forest Energy Society 25(1): 24-30.
  28. Lee, Y.-J., Seo, Y.-O., Park, S.-M., Pyo, J.-K., Kim, R.H., Son, Y.M., Lee, K.-H. and Kim, H.H. 2009. Estimation of biomass for 27 years old Korean pine (Pinus koraiensis) plantation in Gangneung, Gangwon province. Journal of Korean Agrculture and Life Science 43(1): 1-8.
  29. Nabuurs, G.J., Goodale, C., Schelhaas, M.J., Mohren, G.M.J. and Field, C.B. 2003. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Global Change Biology 9: 152-160. https://doi.org/10.1046/j.1365-2486.2003.00570.x
  30. Noh, N.J., Son, Y.H., Kim, J.S., Kim, R.H., Seo, K.Y., Seo, K.W., Koo, J.W., Kyung, J.H., Park, I.H., Lee, Y.J., Son, Y.M. and Lee, K.H. 2006. A study on estimation of biomass, stem density and biomass expansion factor for stand age classes of Japanese larch (Larix leptolepis) stands in Gapyeong area. Journal of Korean Forest Energy Society 25(1): 1-8.
  31. Noh, N.J., Son, Y.H., Kim, R.H., Seo, K.W., Koo, J.W., Park, I.H., Lee, K.H. and Son, Y.M. 2007. Biomass accumulations and the distribution of nitrogen and phosphorus within three Quercus acutissima stands in central Korea. Journal of Plant Biology 50(4): 461-466. https://doi.org/10.1007/BF03030683
  32. Park, I.H. and Kim, J.S. 1989. Biomass regression of Pinus densiflora natural forests of four local forms in Korea. Journal of Korean Forest Society 78(3): 323-330.
  33. Park, I.H. and Lee, S.M. 1990. Biomass and net production of Pinus densiflora natural forests of four local forms in Korea. Journal of Korean Forest Society 79(2): 196-204.
  34. Park, I.H. and Moon, G.S. 1994. Biomass, net production and biomass estimation equations in some natural Quercus forests. Journal of Korean Forest Society 83(2): 246-253.
  35. Park, I.H., Lee, D.K., Lee, K.J. and Moon, G.S. 1996. Growth, biomass and net production of Quercus species (1)-With reference to natural stands of Quercus variabilis, Q. acutissima, Q. dentata, and Q. mongolica in Kwangju, Kyonggi-do. Journal of Korean Forest Society 85(1): 76-83.
  36. Park, I.H. and Ryu, S.B. 1996. Biomass, net production and nutrient distribution of bamboo Phyllostachy stands in Korea. Journal of Korean Forest Society 85(3): 453-461.
  37. Park, G.-S. and Lee, S.-W. 2001. Biomass and net primary production of Quercus variabilis natural forest ecosystems in Gongju, Pohang, and Yangyang areas. Journal of Korean Forest Society 90(6): 692-698.
  38. Park, G.-S. and Lee, S.-W. 2002. Biomass and net primary production of Quercus serrata natural stands in Kwangyang, Muju, and Pohang areas. Journal of Korean Forest Society 91(6): 714-721.
  39. Park, I.H., Seo, Y.K., Kim, D.Y., Son, Y.H., Yi, M.J. and Jin, H.O. 2003. Biomass and net production of a Quercus mongolica stand and a Quercus variabilis stand in Chuncheon, Kangwon-do. Journal of Korean Forest Society 92(1): 52-57.
  40. Park, G.-S. 2003. Biomass and net primary production of Quercus mongolica stands in Kwangyang, Pyungchang, and Youngdong areas. Journal of Korean Forest Society 92(6): 567-574.
  41. Park, I.H., Son, Y.H., Kim, D.Y., Jin, H.O., Yi, M.J., Kim, R.H. and Hwang, J.O. 2005. Biomass and production of a naturally regenerated oak forest in southern Korea. Ecological Research 20: 227-231. https://doi.org/10.1007/s11284-004-0021-x
  42. Song, C.Y. and Lee, S.W. 1996. Biomass and net primary production in natural forests of Quercus mongolica and Quercus variabilis. Journal of Korean Forest Society 85(3): 443-452.
  43. Son, Y.H., Hwang, J.W., Kim, Z.S., Lee, W.K. and Kim, J.S. 2001. Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology 78: 251-255. https://doi.org/10.1016/S0960-8524(01)00012-8
  44. Shin, J.-H. 2002. Ecosystem geography of Korea. In: Lee DW, Jin V, Choe JC, Son YH, Lee H-Y, Hong SK, Ihm B-S (Ed) Ecology of Korea, Bumwoo Publishing Company, Seoul, pp.19-46.
  45. Son, Y.H., Park, I.H., Yi, M.J., Jin, H.O., Kim, D.Y., Kim, R.H. and Hwang, J.O. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecological Research 19: 21-28. https://doi.org/10.1111/j.1440-1703.2003.00617.x
  46. Statistical Yearbook of Forestry. 2009. Korean Forest Service, Seoul, Republic of Korea.
  47. Tak, K., Chun, Y. and Wood, P.M. 2007. The South Korean forest dilemma. International Forestry Review 9: 548-557. https://doi.org/10.1505/ifor.9.1.548
  48. Woodbury, P.B., Smith, J.E. and Heath, L.S. 2007. Carbon sequestration in the U.S. forest sector from 1990 to 2010. Forest Ecology and Management 241: 14-27. https://doi.org/10.1016/j.foreco.2006.12.008
  49. Yi, M.J. 1998. Changes in aboveground biomass and nutrient accumulation of the Korean pine (Pinus koraiensis) plantation by stand age at Kangwondo province. Journal of Korean Forest Society 87(2): 276-285.