DOI QR코드

DOI QR Code

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys

자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동

  • 박종수 (안동대학교 공과대학 신소재공학부 청정소재기술연구센터) ;
  • 성시영 (자동차부품연구원 소재공정연구센터) ;
  • 한범석 (자동차부품연구원 소재공정연구센터) ;
  • 정창렬 (한국생산기술연구원 동력부품지원센터) ;
  • 이기안 (안동대학교 공과대학 신소재공학부 청정소재기술연구센터)
  • Received : 2009.09.14
  • Published : 2010.01.20

Abstract

High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. K. H. Lee, Y. N. Kwon, and S. H. Lee, J. Kor. Inst. Met. & Mater. 45, 18 (2007)
  2. W. S. Miller, L. Zhuang, L. Bottema, A. J. Wittebrood, P. De Smet, A. Hazler, and A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000) https://doi.org/10.1016/S0921-5093(99)00653-X
  3. H. Hayashi and T. Nakagawa, J. Matter. Proc. Tech. 46, 455 (1994) https://doi.org/10.1016/0924-0136(94)90128-7
  4. S. Ashley, Mech. Eng. 119, 56 (1994)
  5. S. W. Han and S. W. Kim, J. Kor Foundrymen's Soc. 22, 61 (2002)
  6. C. H. Caccres, Scr. Metall. 32, 1851 (1995) https://doi.org/10.1016/0956-716X(95)00031-P
  7. C. C. Engler-pinto, J. V. Iasccki, J. M. Boilcau, and J. E. Allison, Society of Automotive Engineers 1, 1029 (2004)
  8. H. R. Ammar, A. M. Samuel, and F. H. Smuel, Mater. Sci. & Eng. A 473, 67 (2008)
  9. E, Rincon, H. F. Lopez, M. M. Cisneros, H. Mancha, and M. A. Cisneros, Mater. Sci. & Eng. A 452-453, 682 (2007) https://doi.org/10.1016/j.msea.2006.11.029
  10. C. H. Caceres and B. I. Selling, Mater, Sci. Eng. A 22, 109 (1996)
  11. J. A. Wasynezuk, W. D. Hanna, F. D. Ross, and T. A. Freitag, Fatigue of Electronic Materials, p.110 Atlanta, USA (1994)
  12. J. S. Park, K. A. Lee, and C. S. Lee, Metals & Materials 5, 559 (1999) https://doi.org/10.1007/BF03026305
  13. D. T. Raske and J. D. Morrow, Manual on low cycle fatigue testing, American Society for Testing and Materials (1996)
  14. U. Bischofberger, G. Neitc, and H. E. Exner, Key Eng. Mater. 44-45, 333 (1990) https://doi.org/10.4028/www.scientific.net/KEM.44-45.333
  15. A. J. Moffat, S. Barnes, B.G. Mellor, and P. A. S. Reed, Int. J. of Fatigue 27, 1564 (2005) https://doi.org/10.1016/j.ijfatigue.2005.06.023
  16. W. W. Bose-Filho, E. R. de Freitas, V. F. da Silva, M. T. Milan, and D. Spinelli, Int. J. of Fatigue 29, 1846 (2007) https://doi.org/10.1016/j.ijfatigue.2007.01.006
  17. L. E. Larsson, A. Wickberg, and G. Gustafsson, Alluminio 53, 29 (1984)