DOI QR코드

DOI QR Code

Design and Fabrication of Variable Optical Signal Delay Line Based on Polymer Coupled Ring Resonators

폴리머 결합 링 공진기 기반 가변 광신호 지연기의 설계 및 제작

  • Kwon, Oh-Sang (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Kim, Jae-Seong (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Chung, Young-Chul (Department of Electronics and Communications Engineering, Kwangwoon University)
  • 권오상 (광운대학교 전자통신공학과) ;
  • 김재성 (광운대학교 전자통신공학과) ;
  • 정영철 (광운대학교 전자통신공학과)
  • Received : 2011.11.03
  • Accepted : 2011.11.24
  • Published : 2011.12.25

Abstract

In this paper, a variable optical signal delay line based on coupled ring resonators is designed and fabricated in high-index contrast polymer material. The free spectral ranges (FSR) of the rings are designed to be 100 GHz, and 8 coupled rings are used. When two rings near a bus waveguide are in resonance, the optical delay is measured to be about 100 ps. When four rings are in resonance, the measured delay is about 180 ps. Both are close to the theoretical calculations.

본 논문에서는 결합 링 공진기 구조 기반의 가변 광신호 지연기를 고 굴절률 차이를 갖는 폴리머 물질을 이용하여 설계 및 제작하였다. 링들의 FSR은 100 GHz 로 설계하였고, 8 개의 링들이 결합된 구조를 사용하였다. 버스 도파로에 가까운 두 개의 링들이 공진하는 경우 약 100 ps, 4 개의 링들이 공진하는 경우 180 ps 정도의 지연시간이 측정되었으며, 이는 이론적인 결과에 가까움을 확인할 수 있었다.

Keywords

References

  1. E. Parra and J. R. Lowell, "Towards applications of slow-light technology," Opt. Photon. News 18, 41-45 (2007).
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999). https://doi.org/10.1038/17561
  3. M . Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638 (2003). https://doi.org/10.1038/nature02176
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). https://doi.org/10.1103/PhysRevLett.94.153902
  5. K. Y. Song and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. 32, 217 (2007). https://doi.org/10.1364/OL.32.000217
  6. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-bandwidth, tunable, multiple-pulsewidth optical delays using slow light in cesium vapour," Phys. Rev. Lett. 98, 153601 (2007). https://doi.org/10.1103/PhysRevLett.98.153601
  7. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062 (2005). https://doi.org/10.1364/JOSAB.22.001062
  8. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in one-dimensional optical superlattices," Appl. Phys. Lett. 88, 241103 (2006). https://doi.org/10.1063/1.2209716
  9. F. Morichetti, A. Melloni, J. Cap, J. Petracek, P. Bienstman, G. Priem, B. Maes, M. Lauritano, and G. Bellanca, "Selfphase modulation in slow-wave structures: a comparative numerical analysis," Opt. Quantum Electron. 38, 761 (2006).
  10. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupledresonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). https://doi.org/10.1364/OL.24.000711
  11. F. Morichetti, A. Melloni, C. Canavesi, F. Persia, M. Martinelli, and M. Sorel, "Tunable slow-wave optical delay-lines," Slow and Fast Light, Washington DC, MB2 (2006).
  12. A. L. Reynolds, U. Peschel, F. Lederer, P. J. Roberts, T. F. Krauss, and P. J. I. De Maagt, "Coupled defects in photonic crystals," IEEE Trans. Microwave Theory Tech. 49, 1860 (2001). https://doi.org/10.1109/22.954799
  13. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004). https://doi.org/10.1109/LPT.2004.834525
  14. J. K. S. Poon, L. Zhu, G. A. De Rose, and A. Yariv, "Transmission and group delay of micro ring coupled resonator optical waveguides," Opt. Lett. 31, 456 (2006). https://doi.org/10.1364/OL.31.000456
  15. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65 (2006).
  16. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, "A reconfigurable architecture for continuously variable optical slow-wave delay lines," Opt. Express 15, 17273-17282 (2007). https://doi.org/10.1364/OE.15.017273
  17. A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003) https://doi.org/10.1023/A:1022957319379
  18. D. Lee, T. Lee, J. Park, S. Kim, and Y. Chung, "Widely tunable double-ring-resonator add/drop filter," Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 18, 216-220 (2007). https://doi.org/10.3807/HKH.2007.18.3.216

Cited by

  1. Variable optical signal delay device composed of double ring resonator add/drop filters and delay waveguides vol.57, pp.6, 2015, https://doi.org/10.1002/mop.29118
  2. Tunable Optical Delay Line Based on Polymer Single-Ring Add/Drop Filters and Delay Waveguides vol.27, pp.5, 2016, https://doi.org/10.3807/KJOP.2016.27.5.174
  3. Las últimas voluntades de Lope Gómez de Marzoa: un ome poderoso y muy emparentado en la cibdad de Santiago vol.63, pp.129, 2016, https://doi.org/10.3989/ceg.2016.129.07
  4. ALL-OPTICAL DELAY MODULE USING CASCADED POLYMER ALL-PASS-FILTER RING RESONATORS vol.38, 2013, https://doi.org/10.2528/PIERL13012501