DOI QR코드

DOI QR Code

Surface Plasmon Modes Confined in the Gap Between Metal Nanowire and Dielectric Slab

유전체 판과 금속 나노선 사이에 구속된 표면 플라즈몬 모드

  • Received : 2011.10.17
  • Accepted : 2011.11.15
  • Published : 2011.12.25

Abstract

We propose a metal-dielectric hybrid waveguide structure consisting of a single metal nanowire placed on a flat dielectric slab. Mode size and propagation loss of the surface-plasmons confined in the metal-dielectric gap are compared with those of the complementary structure with a dielectric nanowire on a metal surface. In the case of the nanowire's diameter much smaller than the wavelength the two structures reveal quite different characteristics; the dielectric nanowire-on-metal has longer propagation distance, but only the metal nanowire-on-dielectric exhibits a mode size two fold smaller than the diffraction limit. The proposed hybrid structure may therefore be more suitable for realization of nanocavity lasers.

회절한계 이하의 모드 크기를 가지는 금속-유전체 혼합 광도파로 구조를 제안하고자 한다. 제안된 혼합 광도파로는 금속 나노선이 유전체 평면 위에 놓인 구조로서, 금속선과 유전체 사이에 구속된 파장보다 작은 크기의 표면-플라즈몬 모드의 특성을 기존의 유전체 나노선을 이용하는 구조와 비교 분석하였다. 두 도파로의 모드 크기와 전파 거리는 나노선의 직경이 큰 경우에는 비슷한 경향을 보이나, 직경이 작아짐에 따라 서로 상이한 값을 가진다. 회절 한계보다 100배 이상 작은 모드를 갖는 파장길이의 나노 공진기 구현을 위해서는 제안된 금속 나노선-유전체 광 도파로 구조가 적합함을 보였다.

Keywords

References

  1. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguide," Phys. Rev. Lett. 93, 137404-1-137404-4 (2004). https://doi.org/10.1103/PhysRevLett.93.137404
  2. Z. Fang, C. Lin, R. Ma, S. Huang, and X. Zhu, "Planar plasmonic focusing and optical transport using CdS nanoribbon," ACS Nano 4, 75-82 (2010). https://doi.org/10.1021/nn900729n
  3. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, "Compressing surface plasmons for nano-scale optical focusing," Opt. Express 17, 7519-7524 (2009). https://doi.org/10.1364/OE.17.007519
  4. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, "Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration," Opt. Express 17, 21320-21325 (2009). https://doi.org/10.1364/OE.17.021320
  5. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, "Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits," Nano Lett. 9, 4515-4519 (2009). https://doi.org/10.1021/nl902860d
  6. S. Randhawa, M. U. Gonzalez, J. Renger, S. Enoch, and R. Quidant, "Design and properties of dielectric surface plasmon Bragg mirrors," Opt. Express 18, 14496-14510 (2010). https://doi.org/10.1364/OE.18.014496
  7. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, "Dielectricloaded surface plasmon polariton waveguides on a finitewidth metal strip," Appl. Phys. Lett. 96, 063105-1-063105-3 (2010). https://doi.org/10.1063/1.3300839
  8. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). https://doi.org/10.1364/OL.22.000475
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photon. 2, 496-500 (2008). https://doi.org/10.1038/nphoton.2008.131
  10. J. Zhang, L. Cai, W. Bai, and G. Song, "Hybrid waveguideplasmon resonances in gold pillar arrays on top of a dielectric waveguide," Opt. Lett. 35, 3408-3410 (2010). https://doi.org/10.1364/OL.35.003408
  11. D. Chen, "Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light," Appl. Opt. 49, 6868-6871 (2010). https://doi.org/10.1364/AO.49.006868
  12. Z. Fang, S. Huang, F. Lin, and X. Zhu, "Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide," Opt. Express 17, 20327-20332 (2009). https://doi.org/10.1364/OE.17.020327
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon Lasers at deep subwavelength scale," Nature 461, 629-632 (2009). https://doi.org/10.1038/nature08364
  14. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009). https://doi.org/10.1364/OE.17.011107
  15. X. Yang, Y. Liu, R. F. Ourton, X. Yin, and X. Zhang, "Optical forces in hybrid plasmonic waveguides," Nano Lett. 11, 321-328 (2011). https://doi.org/10.1021/nl103070n

Cited by

  1. Near-field Evaluation of Surface Plasmon Resonance Biosensor Sensitivity Based on the Overlap Between Field and Target Distribution vol.24, pp.2, 2013, https://doi.org/10.3807/KJOP.2013.24.2.086