DOI QR코드

DOI QR Code

GGenre Pattern based User Clustering for Performance Improvement of Collaborative Filtering System

협업적 여과 시스템의 성능 향상을 위한 장르 패턴 기반 사용자 클러스터링

  • Choi, Ja-Hyun (Department of Computer.Information Engineering, Inha University) ;
  • Ha, In-Ay (Department of Computer.Information Engineering, Inha University) ;
  • Hong, Myung-Duk (Department of Computer.Information Engineering, Inha University) ;
  • Jo, Geun-Sik (School of Computer.Information Engineering, Inha University)
  • 최자현 (인하대학교 컴퓨터.정보공학과) ;
  • 하인애 (인하대학교 컴퓨터.정보공학과) ;
  • 홍명덕 (인하대학교 컴퓨터.정보공학과) ;
  • 조근식 (인하대학교 컴퓨터.정보공학과)
  • Received : 2011.08.30
  • Accepted : 2011.10.20
  • Published : 2011.11.30

Abstract

Collaborative filtering system is the clustering about user is built and then based on that clustering results will recommend the preferred item to the user. However, building user clustering is time consuming and also once the users evaluate and give feedback about the film then rebuilding the system is not simple. In this paper, genre pattern of movie recommendation systems is being used and in order to simplify and reduce time of rebuilding user clustering. A Frequent pattern networks is used and then extracts user preference genre patterns and through that extracted patterns user clustering will be built. Through built the clustering for all neighboring users to collaborative filtering is applied and then recommends movies to the user. When receiving user information feedback, traditional collaborative filtering is to rebuild the clustering for all neighbouring users to research and do the clustering. However by using frequent pattern Networks, through user clustering based on genre pattern, collaborative filtering is applied and when rebuilding user clustering inquiry limited by search time can be reduced. After receiving user information feedback through proposed user clustering based on genre pattern, the time that need to spent on re-establishing user clustering can be reduced and also enable the possibility of traditional collaborative filtering systems and recommendation of a similar performance.

협업적 여과 시스템은 사용자에 대한 클러스터링을 구축한 후, 구축된 클러스터를 기반으로 사용자에게 아이템을 추천한다. 그러나 사용자 클러스터링 구축에 많은 시간이 소요되고, 사용자가 평가한 아이템이 피드백 되었을 경우 재구축이 쉽지 않다. 본 논문에서는 영화 추천 시스템에서의 사용자 클러스터링의 재구축 시간을 단축시키기 위해서 빈발 패턴 네트워크를 이용하여 사용자가 선호하는 장르 패턴을 추출하고, 추출된 패턴을 통해 사용자 클러스터링을 구축한다. 구축된 사용자 클러스터링을 협업적 여과에 적용하여 사용자에게 영화를 추천한다. 사용자 정보가 피드백 될 때, 전통적 협업적 여과는 사용자 클러스터링을 재구축하기 위해 모든 이웃 사용자를 재탐색하여 클러스터링 한다. 하지만 빈발 패턴 네트워크를 이용하여 장르 패턴 기반의 사용자 클러스터링을 적용한 협업적 여과는 사용자 클러스터링을 재구축시 사용자 탐색 공간을 국한시킴으로써 탐색 시간을 줄일 수 있다. 제안하는 장르 패턴기반의 사용자 클러스터링을 통해 사용자 정보가 피드백 된 후 사용자 클러스터를 재구축시 소요되는 시간을 줄일 수 있고, 전통적인 협업적 여과 시스템과 유사한 성능의 추천이 가능하게 되었다.

Keywords

References

  1. A. Ansari, S. Essegaier, and R. Kohli, "Internet Recommendation Systems," Journal of Marketing Research, Vol. 37, No. 3, pp. 363-375, Aug 2000 https://doi.org/10.1509/jmkr.37.3.363.18779
  2. D. Cho, K. Chung, K. Rim and J. Lee, "Method of Associative Group Using FP-Tree in Personalized Recommendation System," Journal of Korea Contents, Vol. 7, No. 10, pp. 19-26, Oct 2007 https://doi.org/10.5392/JKCA.2007.7.10.019
  3. K. Oh, J. Jung, I. Ha, G. Jo, "Discovering Association Rules using Item Clustering on Frequent Pattern Network," Journal of The Korea Intelligent Informat ion System Society, Vol. 14, No. 1, pp.1-17, March 2008
  4. J. Wang, N. Zhang, and J. Yin, "Collaborative Filtering Recommendation Based Fuzzy Clustering of User Preferences," Fuzzy Systems and Knowledge Discovery, Vol 6, pp. 1946-1950, 10-12 Aug. 2010
  5. G. Lekakos and G. M. Giaglis, "Improving the prediction accuracy of recommendation algorithms: Approaches anchored on human factors," Interacting with Computers, Vol. 18, Issue 3, pp. 410-431, May 2006 https://doi.org/10.1016/j.intcom.2005.11.004
  6. S. Choi, Y. Han, "A Content Recommendation System Based on Category Correlations," ICCGI '10 Proceed ings of the 2010 5th International Multi-conf erence on Computing in the Global Information Technology, pp. 66-70, 11 Nov 2010
  7. S. Lee, S. Park, "Performance Improvement of a Movie Recommendation System using Genre-wise Collaborative Filtering", Journal of The Korea Intelligent Information System Society, Vol. 13, No. 4, pp. 65-78, Dec 2007
  8. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering Frequent Closed Itemsets for Association Rules," In Proceedings of the 7th International Conference on Database Theory, pp. 398-416, 1999
  9. R. Agrawal and R. Srikant, "Mining Sequental Patterns," 11th International Conference on Data Engineering, pp. 3-14, 1995
  10. P. Resnick, N. Iacovou, M. Suchak, and P. Bergstrom, J. Riedl, "GroupLens: an open architec ture for collaborative filtering of netnews," ACM conference on Computer supported cooperative work, pp. 175-186, 1994