DOI QR코드

DOI QR Code

3D RANS Simulation and the Prediction by CRN Regarding NOx in a Lean Premixed Combustion in a Gas Turbine Combustor

희박 예혼합 가스터빈 연소기 3 차원 전산 해석 및 화학반응기 네트워크에 의한 NOx 예측

  • 이재복 (포항공과대학교 기계공학과) ;
  • 정대로 (포항공과대학교 기계공학과) ;
  • 허강열 (포항공과대학교 기계공학과) ;
  • 진재민 (건국대학교 기계공학부) ;
  • 박정규 (건국대학교 기계공학부) ;
  • 이민철 (한국전력공사 전력연구원)
  • Received : 2011.01.28
  • Accepted : 2011.10.06
  • Published : 2011.12.01

Abstract

This paper presents 3D simulation by STAR-CCM+ for lean premixed combustion in a stationary gas turbine combustor with separate pilot and main nozzles. The constant for the source term in the flame area density transport equation was modified to account for a low global equivalence ratio and validated against measurement data. A Partially-premixed Coherent Flame Model(PCFM) involves propagation of a laminar premixed flame with the predicted flame surface density and equilibrium assumption in the burned gas with spatial inhomogeneity. The conditions for cooling by radiation and convection are considered for accurate determination of the heat flux on the wall. A parametric study is of the pilot-fuel-to-total-fuel-ratio is carried out. A chemical reactor network (CRN) was constructed on the basis of the 3D simulation results and compared against measurements of NOx.

희박예혼합 가스터빈 연소기에 대한 3 차원 RANS 해석을 수행하였으며 PCFM(Partially Premixed Coherent Flame Model) 화염면적밀도 생성항 상수의 보정을 통하여 희박연소조건을 모사하였다. PCFM 에서 계산된 화염면적밀도에 의해 층류 예혼합 화염의 전파를 예측하고 불균일하게 분포한 기연 가스의 물성을 평형 가정에 따라 예측하였다. 복사와 대류 열전달을 모사하기 위해 냉각 조건으로서 실험과의 비교를 통해 결정된 열유속을 적용하였다. 이러한 3 차원 해석 결과를 바탕으로 파일럿 노즐과 메인 노즐에 분배되는 연료량 비에 대한 민감도 조사를 수행하였으며 CRN(Chemical Reactor Network)을 구성하여 NOx 배출량을 예측하고 측정값과 비교 분석하였다.

Keywords

References

  1. Park, P. M., Kim, H. M., Choi, Y. H., Yang, S. S. and Chon, M. H., 2008, "Performance Test of 5MW Gas Turbine Engine Combustor," Journal of the Korean society of combustion, Vol. 13, No. 13, pp. 37-46.
  2. Park, P. M., Kim, H. M., Choi, C. H., Lee, C. S. and Yang, S. S., 2009, "Performance Tests for Improving Low NOx Combustor of 5MW Class Gas Turbine Engine," The 39th KOSCO Symposium, pp. 81-86.
  3. Park, J. C. and Ryu, J. W., 2009, "5MW Class Gas Turbine Performance Characteristics Using Biogas of Low LHV," Proceeding of KSME Spring Annual Meeting, nergy and Power Engineering Division, pp. 32-37.
  4. Lee, M. C., Park, W. S. and Ahn, D. H., 2008, "Gas Turbine Combustion Performance Test of a Double Swirl Type Combustor," 2008 kosee Spring Meeting, pp. 193-198.
  5. STAR-CCM+ User Guide (Ver 4.02) pp. 1721-1740.
  6. Aluri, N. K., Sha, Q., Muppala, S. P. R. and Dinkelacker, F., 2005, "Flame Surface Density Models a Numerical Evaluation," Proceedings of the European Combustion meetings 2005.
  7. Yilmaz, B., Ozdogan, S. and Gokalp, I., 2009, "Numerical Study on Flame-Front Characteristics of Conical Turbulent Lean Premixed Methane/Air Flames," Energy Fuels, Vol. 23, No. 4, pp. 1843-1848. https://doi.org/10.1021/ef8003587
  8. Novosselov, I. V., 2002 "Eight-Step Global Kinetic Mechanism of Methane Oxidation with Nitric Oxide Formation for Lean Premixed Combustion Turbines," MSME Thesis, University of Washington, Seattle, WA.
  9. Novosselov, I. V., 2006, "Chemical Reactor Network Modeling of Combustion Systems," Ph.D. Dissertation, University of Washington, Settle, WA.
  10. Lee, D., Park, J., Jin, J. and Lee, M., 2001, "A Simulation for Prediction of Nitrogen Oxide Emissions in Lean Premixed Combustor," Journal of Mechanical Science and Technology, Vol. 25, No. 7, pp. 1871-1878. https://doi.org/10.1007/s12206-011-0425-9