DOI QR코드

DOI QR Code

높은 솔리디티를 갖는 자이로밀의 공기역학적 특성

Aerodynamic Characteristics of Giromill with High Solidity

  • 이주희 (호서대학교 메카트로닉스공학과) ;
  • 유영소 (한양대학교 대학원 기계공학과)
  • Lee, Ju-Hee (Dept. of Mechatronics Engineering, Hoseo Univ.) ;
  • Yoo, Young-So (Graduate School of Mechanical Engineering, Hanyang Univ.)
  • 투고 : 2011.02.25
  • 심사 : 2011.09.27
  • 발행 : 2011.12.01

초록

3 차원 비정상유동해석을 통하여 자이로밀의 공기역학적 특성을 고찰하였다. 일반적으로 소형자이로밀은 구조가 간단하고 솔리디티가 높아 제작이 쉽고 자구동(self-starting)이 가능하다는 장점을 가지고 있다. 그러나 TSR (tip speed ratio)가 4~7 인 다리우스풍력발전기와 다르게 1~3 정도로 매우 낮다. 본 연구에 사용한 자이로밀은 일정한 단면을 가진 3 개의 직선날개로 구성되어 있으며 솔리디티는 0.75 이다. 솔리디티가 매우 낮은 다리우스풍력발전기와 다르게 자이로밀은 TSR 이 증가함에 따라 날개 상호간의 간섭과 하류에 위치하는 날개로 유입되는 유동속도의 급격한 감소로 인하여 양력이 감소하고 날개의 회전속도에 의하여 주변의 공기가 가속되면서 항력의 증가로 성능이 저하되었다. 이로 인하여 TSR 이 2.4에서 최고의 성능을 나타내며 이후로 급격히 감소하는 것을 알 수 있었다.

A 3-dimensional unsteady numerical analysis has been performed to evaluate the aerodynamic characteristics of a Giromill. Generally, the structure of a Giromill is simple and therefore easy to develop. In addition, the high solidity of the Gironmill helps improve the self-starting capacity at a low tip speed ratio (TSR). However, contrary to the Darrieus wind turbine which has a TSR of 4-7, a Giromill has a low TSR of 1-3. In this study, the aerodynamic characteristics of the Giromill are investigated using computational fluid dynamics (CFD). Three straight-bladed wings are used, and the solidity of the Giromill is 0.75. In contrast to a Darrieus wind turbine having low solidity, the Giromill shows a sudden decrease in the aerodynamic performance because of the interference between the wings and an increase in the drag on the wings in the downstream direction where wind flow is significantly reduced. Consequently, the aerodynamic performance decreased at a TSR value lower than 2.4.

키워드

참고문헌

  1. Savonius, S. J., 1931, "The S-Rotor and Its Applications," Mech. Eng., Vol. 53, No. 5 pp. 333-338.
  2. Darrieus, GJM, 1931, Turbine Having Its Rotating Shaft Transverse to the Flow of the Current, US Patent No.1835081.
  3. Islam, M., Ting, David S.-K., and Fartaj, A., 2008, "Aerodynamic Models for Darrieus-Type Straight- Blade Vertical Axis Wind Turbines," Renewable and Sustainable Energy Reviews, Vol. 12, pp. 1087-1109. https://doi.org/10.1016/j.rser.2006.10.023
  4. Blackwell, B. F., 1974, The Vertical Axis Wind Turbine How it Works, SANDIA, SLA-74-0160.
  5. Blackwell, B. F., Sheldahl R. E., Feltz, L. V., 1976, Wind Tunnel Performance Data for the Darrieus Wind Turbine with NACA0012 Blades, SANDIA, SAND76- 0130.
  6. Carne, T. G., 1980, Guy Cable Design and Damping for Vertical Axis Wind Turbines, SANDIA, SAND80-2669.
  7. Oler, J. W., Strickland, J. H., Im, B. J., Graham, G. H., 1983, Dynamic Stall Regulation of the Darrieus Turbine, SANDIA, SAND83-7029.
  8. Sheldahl, R. E., Klimas, P. C., Feltz, L. V., 1980, Aerodynamic Performance of a 5-Meterr Diameter Darrieus Turbine with Extruded Aluminum NACA- 0015 Blades, SANDIA, SAND80-0179.
  9. Reuter, R. C. Jr, 1977, Vertical Axis Wind Turbine Tie-down Design with an Example, SANDIA, SAND77-1919.
  10. Klimas, P. C. and Sheldahl, R. E., 1978, Four Aerodynamic Prediction Schemes for Vertical-Axis Wind Turbines: a Compendium, SANDIA, SAND78-0014.
  11. Ashwill, T. D., Loenard, T. M., 1986, Developments in Blade Shaped Design for a Darrieus Vertical Axis Wind Turbine, SANDIA, DAND86-1085
  12. Klimas, P. C., 1984, Tailored Airfoils for Vertical Axis Wind Turbines, SANDIA, SAND84-1062
  13. Scheldahl, R. E., Klimas, P. C., 1981, Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis wind Turbine, SANDIA, SAND80-2114.
  14. Popelka, D., 1982, Aeroelastic Stability Analysis of a Darrieus Wind Turbine, SANDIA, SAND82-0672.
  15. Reuter, R. C., Jr. and Worstell, M. H., 1978, Torque Ripple in a Veritcla Axis Wind Turbine, SANDIA, SAND78-0577.
  16. Carne, T. G., Lobitz, D. W., Nord, A. R., Watson, R. A., 1982, Finite Element Analysis and Modal Testing of a Rotating Wing Turbine, SANDIA, SAND82-0345.
  17. Yoo, N. S., "A Study of the Performance Prediction of the Darrieus Wind Turbine," Transaction of JSAS, 1992, Vol. 20, No. 1, pp. 80-94.
  18. Park, J.-Y., Lee, M. J., Lee, S.-J. and Lee, S., "An Experimental Study on the Aerodynamic Performance of High-Efficient, Small-Scale, Vertical-Axis Wind Turbine," 2009, Transaction of JMST B, Vol. 33, No. 8, pp. 580-588.
  19. Jung, H.Y., Lee, Y. W., and Kim, Y.D., 2008, "Numerical Study on the Starting Chracteristics of Vertical Axis Wind Turbine," Proceedings of 2008 Korea Marine Engineering Conference, pp. 297-298. (Korean)
  20. Jung, H.Y., Lee, Y.W., and Kim, Y.D., 2008, "A Simulation on the Starting Characteristics of Vertical Axis Wind Turbine," Proceedings of 11th Wind Engineering, pp. 127-132. (Korean)
  21. Wahl, M., Designing an H-Rotor Type Wind Turbine for Operation on Amundsen-Scott South Pole Station, UPPSALA University, 2007, UPTEC ES070030.
  22. STAR-CCM+, 2006, Methodology, CD-adapco.
  23. Caradonna, F. X. and Tung, C., 1981, Experimental and Analytical Studies of a Model Helicopter Rotor in Hover, NASA Technical Memorandum 81232.
  24. Kim, D.-K., Kim, M.-K., Cha, D.-K., Yoon, S.-H., 2006, "Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade," Journal of Fluid Machinery, Vol. 9, No. 2, pp.7-12. https://doi.org/10.5293/KFMA.2006.9.2.007
  25. WAKUI, T., TANZAWA, Y., HASHIZUME, T., and NAGAO, T., 2005, "Hybrid Configuration of Darrieus and Savonius Rotors for Stand-Alone Wind Turbine- Generator Systems," Electrical Engineering in Japan, Vol. 150, No. 4, pp. 259-266.
  26. Wahl, M., 2007, Designing an H-rotor type Wind Turbine for Operation on Amundsen-Scott South Pole Station, Thesis, Upsala University.
  27. Kirke, B. K., 1998, Evaluation of Self-Starting Vertical Axis Wing Turbines for Stand-Alone Application, Ph.D. Thesis, Griffith University.