DOI QR코드

DOI QR Code

Analysis on the Formation of Li4SiO4 and Li2SiO3 through First Principle Calculations and Comparing with Experimental Data Related to Lithium Battery

  • Received : 2011.07.28
  • Accepted : 2011.09.24
  • Published : 2011.09.30

Abstract

The formation of Li-Si-O phases, $Li_4SiO_4$ and $Li_2SiO_3$ from the starting materials SiO and $Li_2O$ are analyzed using Vienna Ab-initio Simulation (VASP) package and the total energies of Li-Si-O compounds are evaluated using Projector Augmented Wave (PAW) method and correlated the structural characteristics of the binary system SiO-$Li_2O$ with experimental data from electrochemical method. Despite $Li_2SiO_3$ becomes stable phase by virtue of lowest formation energy calculated through VASP, the experimental method shows presence of $Li_4SiO_4$ as the only product formed when SiO and $Li_2O$ reacts during slow heating to reach $550^{\circ}C$ and found no evidence for the formation of $Li_2SiO_3$. Also, higher density of $Li_4SiO_4$(2.42 g $ml^{-1}$) compared to the compositional mixture $1SiO_2-2Li_2O$ (2.226 g $ml^{-1}$) and better cycle capacity observed through experiment proves that $Li_4SiO_4$ as the most stable anode supported by better cycleabilityfor lithium ion battery remains as paradox from the point of view of VASP calculations.

Keywords

References

  1. N. Dimov, K. Fukuda, T. Umeno, S. Kugino and M. Yoshio, J. Power Sources,114,88 (2003). https://doi.org/10.1016/S0378-7753(02)00533-5
  2. N. Dimov, S. Kuginoand and M. Yoshio, Electrochim. Acta, 48, 1579 (2003). https://doi.org/10.1016/S0013-4686(03)00030-6
  3. C. H. Doh, H. M. Shin, D. H. Kim, Y. D. Jeong, S. I. Moon, B. S. Jin, H. S. Kim, K. W. Kim and D. H. Oh, A. Veluchamy, J. Alloys compd. 461, 321 (2008). https://doi.org/10.1016/j.jallcom.2007.06.125
  4. M. S. Park, S. Rajendran, Y. M. Kang, K. S. Han, Y. S. Han and J. Y. Lee, J. Power Sources, 158,650 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.052
  5. N. Jayaprakash, N. Kalaiselvi and C. H. Doh, Intermetallics, 15, 442 (2007). https://doi.org/10.1016/j.intermet.2006.08.014
  6. N. Dimov, K. Fukuda, T. Umeno, S. Kugino and M. Yoshio, J. Power Sources, 114, 88 (2003). https://doi.org/10.1016/S0378-7753(02)00533-5
  7. C. H. Doh, H. M. Shin, D. H. Kim, Y. C. Ha, B. S. Jin, H. S. Kim, S. I. Moon and A. Veluchamy, Electrochem. Commun., 10, 233 (2008). https://doi.org/10.1016/j.elecom.2007.11.034
  8. C. H. Doh, H. M. Shin, D. H. Kim, Y. C. Ha, B. S. Jin, H. S. Kim, S. I. Moon and A. Veluchamy, Electrochem. Commun., 10, 233 (2008). https://doi.org/10.1016/j.elecom.2007.11.034
  9. M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta and M. Shirakata, J. Electrochem. Soc.,152, A2089 (2005). https://doi.org/10.1149/1.2013210
  10. K. Schulmeister and W. Mader, J. Non-Cryr. Solids, 320, 143 (2003). https://doi.org/10.1016/S0022-3093(03)00029-2
  11. C. H. Doh, C. W. park, H. M. Shin, D. H. Kim, Y. D. Chung, S. I. Moon, B. S. Jin, H. S. Kim and A. Veluchamy, J. Powers Sources, 179, 367 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.074
  12. A. Veluchamy, C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, K. H. Ha, H. M. Shin, B. S. Jin, H. S. Kim, S. I. Moon and C. W. Park, J. Power Sources, 188, 574 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.137
  13. Y. Lee and S. M. Lee, Electrochem. Commun., 6, 465 (2004). https://doi.org/10.1016/j.elecom.2004.03.005
  14. J. H. Kim, H. J. Sohn, H. Kim, G. Jeong and W. Choi, J. Powers Sources, 170, 456 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.081
  15. C. H. Doh, H. M. Shin, D. H. Kim, Y. C. Ha, B. S. Jin, H. S. Kim, S. I. Moon and A. Veluchamy, Electrochem. Commun., 10, 233 (2008). https://doi.org/10.1016/j.elecom.2007.11.034
  16. X. Yang, Z. Wen, X. Xu, B. Lin and S. Huang, J. Power Sources, 164, 880 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.010
  17. T. Tabuchi, H. Yasuda and M. Yamachi, J. Power Sources, 146, 507 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.100
  18. A. F. Holleman and E. Wiberg, Inorg. Chem., San Diego: Academic Press, ISBN 0-12-352651-5, 2001.
  19. C. A. Schacht, Refractories Handbook, CRC Press, ISBN 0824756541, 2004.
  20. P. Jutziand U. Schubert, Silicon Chem.: from the atom to extended systems, Wiley-VCH ISBN 3527306471, 2003.
  21. A. F. Hollemanand E. Wiberg, Inorg. Chem., San Diego: Academic Press, ISBN 0-12-352651-5, 2001.
  22. C. H. Doh, H. M. Shin, D. H. Kim, Y. C. Ha, B. S. Jin, H. S. Kim, S. I. Moonand A. Veluchamy, Electrochem. Commun., 10, 233 (2008). https://doi.org/10.1016/j.elecom.2007.11.034
  23. A. Veluchamy, C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, K. H. Ha, H. M. Shin, B. S. Jin, H. S. Kim, S. I. Moonand C. W. Park, J. Power Sources, 188, 574 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.137
  24. G. Kresse and J. Hafner, Phys. Rev. B 47, 558(R) (1993); 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.47.558
  25. G. Kresse and D. Joubert, Phys. Rev., 59, 1758 (1999).
  26. P. E. Blochl, Phys. Rev. B, 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  27. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  28. F. Zhou, C. A. Marianetti, M. Cococcioni, D. Morgan and G. Ceder, Phys. Rev., B, 69, 201101(R) (2004). https://doi.org/10.1103/PhysRevB.69.201101
  29. A. Veluchamy, C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, K. H. Ha, H. M. Shin, B. S. Jin, H. S. Kim, S. I. Moonand C. W. Park, J. Power Sources, 188, 574 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.137
  30. A. Hohl, T. Wieder, P. A. van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer and H. Fuess, J. Non-Cryst. Solids, 320, 255 (2003). https://doi.org/10.1016/S0022-3093(03)00031-0
  31. International Application published under the patent corporation treaty (PCT), International Publication Number WO 2004/093223 A2 dated 28.10.2004, PCT/US2004/011350.
  32. X. Yang, Z. Wen, X. Xu, B. Linand S. Huang, J. Power Sources, 164, 880 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.010
  33. V. L. Chevrierand J. R. Dahn, J. Electrochem. Soc., 156, A454 (2009). https://doi.org/10.1149/1.3111037
  34. M. N. Obrovacand L. Christensen, Electrochem. Solid-State Letters,7, A93 (2004). https://doi.org/10.1149/1.1652421
  35. A. Veluchamy, C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, K. H. Ha, H. M. Shin, B. S. Jin, H. S. Kim, S. I. Moonand C. W. Park, J. Power Sources, 188, 574 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.137
  36. D. Cruz, S. Bulbulian, E. Limaand and H. Pfeiffer, J. Solid State Chemistry, 179, 909 (2006). https://doi.org/10.1016/j.jssc.2005.12.020
  37. S. Claus, H. Kleykampand and W. Smykatz-Kloss, J. Nuclear Materials, 230, 8 (1996). https://doi.org/10.1016/0022-3115(96)00022-0
  38. I. M. Hodge, M. D. Ingramand and A. R. West, J. Am. Ceram. Soc., 59, 360 (2006).

Cited by

  1. Good lithium storage performance of Fe2SiO4 as an anode material for secondary lithium ion batteries vol.7, pp.8, 2017, https://doi.org/10.1039/C6RA26376C
  2. Carbon-coated manganese silicate exhibiting excellent rate performance and high-rate cycling stability for lithium-ion storage vol.186, 2015, https://doi.org/10.1016/j.electacta.2015.11.009
  3. Hierarchical SiOx nanoconifers for Li-ion battery anodes with structural stability and kinetic enhancement vol.229, 2013, https://doi.org/10.1016/j.jpowsour.2012.12.002
  4. Electrical behaviour of ceramic breeder blankets in pebble form after γ-radiation vol.3-4, 2015, https://doi.org/10.1016/j.nme.2015.02.001
  5. Phase states of Li(Na,K,Rb,Cs)/W/Mn/SiO2 composite catalysts for oxidative coupling of methane vol.61, pp.14, 2016, https://doi.org/10.1134/S0036023616140035
  6. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries vol.244, 2013, https://doi.org/10.1016/j.jpowsour.2013.02.077
  7. Phase states of Li/W/Mn/SiO2 composites in catalytic oxidative coupling of methane vol.51, pp.4, 2015, https://doi.org/10.1134/S002016851504010X