DOI QR코드

DOI QR Code

UWB Antenna with Triple Band-Notched Characteristics Using the Spiral Resonator and the CSRR

스파이럴 공진기와 CSRR을 이용한 삼중 대역 저지 특성을 갖는 UWB 안테나

  • Kim, Jang-Yeol (School of Information and Communication Engineering, Chungbuk National University) ;
  • Lee, Seung-Woo (School of Information and Communication Engineering, Chungbuk National University) ;
  • Kim, Nam (School of Information and Communication Engineering, Chungbuk National University) ;
  • Lee, Sang-Min (School of Information and Communication Engineering, Chungbuk National University) ;
  • Oh, Byoung-Cheol (Law School, Yonsei University)
  • 김장렬 (충북대학교 정보통신공학부) ;
  • 이승우 (충북대학교 정보통신공학부) ;
  • 김남 (충북대학교 정보통신공학부) ;
  • 이상민 (충북대학교 정보통신공학부) ;
  • 오병철 (연세대학교 법학전문대학원)
  • Accepted : 2011.09.26
  • Published : 2011.11.30

Abstract

In this paper, a triple band-notched UWB antennas using a spiral resonator and a complementary split ring resonator is proposed as two types. The band-rejection characteristic of the designed antenna is analyzed through the structure and equivalent circuit model of spiral resonator and CSRR. The measured results of first type antenna show that a VSWR less than 2 was satisfied with a resonant frequency in the range of 1.16~12 GHz and it can be obtained the band-stop performance at 3.3~3.85 GHz, 5.15~6.1 GHz, and 8.025~8.5 GHz. The measured results of second type antenna show that a VSWR less than 2 was satisfied with this antenna works from 1.79 to 12 GHz and it can be achieved the band-notched performance at 3.3~3.88 GHz, 5.12~5.94 GHz, and 8.025~8.51 GHz. Through the measured results, the designed antenna was satisfied UWB band except for triple notched bands.

본 논문은 스파이럴 공진기(spiral resonators)와 CSRR(Complementary Split Ring Resonator)를 이용하여 삼중 대역 저지 특성을 갖는 UWB 안테나를 두 가지 타입으로 제안하였다. 제안된 안테나의 대역 저지 특성 분석을 위해 스파이럴 공진기와 CSRR의 구조 및 등가 회로를 통해 해석하였다. 첫 번째 타입의 안테나의 측정 결과는 1.16~12 GHz에서 VSWR<2 이하를 만족하였고, 3.3~3.85 GHz, 5.15~6.1 GHz, 8.025~8.5 GHz에서 대역 저지 특성이 나타났다. 두 번째 타입 안테나의 측정 결과는 1.79~12 GHz에서 VSWR<2 이하를 만족하였고, 3.3~3.88 GHz, 5.12~5.94 GHz, 8.025~8.51 GHz에서 대역 차단 특성이 나타났다. 측정결과를 통해 제안된 안테나는 노치대역을 제외하고 UWB 전 대역을 만족하였다.

Keywords

References

  1. 윤두영, 정수연, "UWB 기술 개요 및 주파수 정책동향", 정보통신정책, 통권 397호, 2006년 7월.
  2. M. J. Ammann, Z. N. Chen, "Wideband monopole antennas for multi-band wireless systems", IEEE Antennas and Propagation Magazine, vol. 45, no. 2, pp. 146-150, Apr. 2003. https://doi.org/10.1109/MAP.2003.1203133
  3. N. P. Agrawall, G. Kumar, and K. P. Ray, "Wide- band planar monopole antennas", IEEE Transactions on Antennas and Propagation, vol. 46, no. 2, pp. 294-295, Feb. 1998. https://doi.org/10.1109/8.660976
  4. E. Antonino-Daviu, M. Cabedo-Fabre's, M. Ferrando- Bataller, and A. Valero-Nogueira, "Wideband double- fed planar monopole antennas", Electronics Letters, vol. 39, no. 23, pp. 1635-1636, Nov. 2003. https://doi.org/10.1049/el:20031087
  5. Z. N. Chen, M. Y. W. Chia, and M. J. Ammann, "Optimization and comparison of broadband monopoles", IEE Proc. Microwave Antennas Propag., vol. 150, no. 6, pp. 429-435, Dec. 2003. https://doi.org/10.1049/ip-map:20030856
  6. J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, "Printed circular disc monopole antenna antenna for ultra-wideband applications", Electronics Letters, vol. 40, no. 20, pp. 1246-1247, Sep. 2004. https://doi.org/10.1049/el:20045966
  7. Y. Kim, D. H. Kwon, "CPW-fed planar ultra wideband antenna having a frequency band notch function", Electronics Letters, vol. 40, no. 7, pp. 403-405, Apr. 2004. https://doi.org/10.1049/el:20040302
  8. A. Kerkhoff, H. Ling, "Design of a monopole antenna for use with ultrawideband having a bandnotched characteristic", IEEE Int'l Symposium on Antenna and Propagation, vol. 1, pp. 830-833, Jun. 2003.
  9. F. T. Zha, S. X. Gong, G. Liu, H. Y. Yang, and S. G. Lin, "Compact slot antenna for 2.4 GHz/UWB with dual band-notched characteristic", Microwave and Optical Technology Letterrs, vol. 51, no. 8, pp. 1859-1862, Aug. 2009. https://doi.org/10.1002/mop.24475
  10. W. Wang, S. Gong, Zhen Cui, J. Liw, and J. Ling, "Dual band-notchedultra-wideband antenna with codirectional SRR", Microwave and Optical Technology Letterrs, vol. 51, issue 4, pp. 1032-1034, Apr. 2009. https://doi.org/10.1002/mop.24255
  11. V. Oznazi, V. B. Ertukk, "A comparative inves-tigation of SRR- and CSRR-based band reject filter: simulations, experiments, and discussions", Microwave and Optical Technology Letters, vol. 50, issue 2, pp. 519-523, Feb. 2008. https://doi.org/10.1002/mop.23119
  12. 조남이, 김당오, 김채영, 최동묵, "SRR을 이용한 WLAN 대역 저지용 UWB 안테나의 설계 및 제작", 한국전자파학회논문지, 20(9), pp. 1014-1020, 2009년 9월. https://doi.org/10.5515/KJKIEES.2009.20.9.1014
  13. X. -J. Liao, H. -C. Yang, N. Han, and Y. Li, "A semi-circle-shaped aperture UWB antenna with triple band-notched character", J. of Electromagn. Waves and Appl., vol. 25, no. 2-3, pp. 257-266, Jan. 2011. https://doi.org/10.1163/156939311794362759
  14. Y. Zhang, W. Hong, C. Yu, Z. Q. Kuai, Y. D. Don, and J. Y. Zhou, "Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line", IEEE Transaction on Antennas and Propagation, vol. 56, no. 9, pp. 3063-3068, Sep. 2008. https://doi.org/10.1109/TAP.2008.928815
  15. D. -O. Kim, C.-Y. Kim, "CPW-fed ultra-wideband antenna with triple-band notch function", Electronics Letters, vol. 46, no. 18, pp. 1246-1248, Sep. 2010. https://doi.org/10.1049/el.2010.1415
  16. 김장렬, 이승우, 김남, 오병철, "CSRR을 이용한 WLAN 대역 저지 특성 CPW 급전 광대역 안테나 설계", 한국전자파학회논문지, 22(5), pp. 528- 537, 2011년 5월. https://doi.org/10.5515/KJKIEES.2011.22.5.528
  17. 김남, 손귀범, 박상명, "CPW 급전 단일 평면 부채꼴 UWB 안테나 설계 및 제작", 한국전자파학회논문지, 18(3), pp. 305-314, 2007년 3월. https://doi.org/10.5515/KJKIEES.2007.18.3.305
  18. 유주봉, 전준호, 안찬규, 김우찬, 양운근, "CPW급전 방식을 이용한 UWB 모노폴 안테나 설계 및 구현", 한국전자파학회논문지, 21(2), pp. 218- 223, 2010년 2월. https://doi.org/10.5515/KJKIEES.2010.21.2.218
  19. 이종혁, 오영철, 명로훈, "Split-ring 공진기와 spiral 공진기를 이용한 새로운 소형의 마이크로스트립 대역 저지 필터 설계", 한국전자파학회논문지, 18(7), pp. 796-808, 2007년 7월. https://doi.org/10.5515/KJKIEES.2007.18.7.796
  20. H. M. Greenhouse, "Design of planar rectangular microelectronic inductors", IEEE Trans. Parts, Hybrids, Pack., vol. 10, no. 2, pp. 101-109, Jun. 1974. https://doi.org/10.1109/TPHP.1974.1134841
  21. Z. M. Hejazi, P. S. Excell, and Z. Jiang, "Accurate distributed inductance of spiral resonators", IEEE Microwave and Guided Wave Letters, vol. 8, no. 4, pp. 164-166, Apr. 1998. https://doi.org/10.1109/75.663521
  22. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia- Garcia, I. Gil, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines", IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451-1461, Apr. 2005. https://doi.org/10.1109/TMTT.2005.845211

Cited by

  1. Design and Implementation of Monopole Antenna with Parasitic Element of Spiral Shape and L-Resonator vol.24, pp.1, 2013, https://doi.org/10.5515/KJKIEES.2013.24.1.11