DOI QR코드

DOI QR Code

Microstructural Investigation of Alloy 617 Creep-Ruptured in Pure Helium Environment at 950℃

950℃ 순수헬륨 분위기에서 크리프 파단된 Alloy 617의 미세구조적 고찰

  • Lee, Gyeong-Geun (Korea Atomic Energy Research Institute Nuclear Materials Division) ;
  • Jung, Su-Jin (Korea Atomic Energy Research Institute Nuclear Materials Division) ;
  • Kim, Dae-Jong (Korea Atomic Energy Research Institute Nuclear Materials Division) ;
  • Kim, Woo-Gon (Korea Atomic Energy Research Institute Nuclear Materials Division) ;
  • Park, Ji-Yeon (Korea Atomic Energy Research Institute Nuclear Materials Division) ;
  • Kim, Dong-Jin (Korea Atomic Energy Research Institute Nuclear Materials Division)
  • 이경근 (한국원자력연구원 원자력재료개발부) ;
  • 정수진 (한국원자력연구원 원자력재료개발부) ;
  • 김대종 (한국원자력연구원 원자력재료개발부) ;
  • 김우곤 (한국원자력연구원 원자력재료개발부) ;
  • 박지연 (한국원자력연구원 원자력재료개발부) ;
  • 김동진 (한국원자력연구원 원자력재료개발부)
  • Received : 2011.09.14
  • Accepted : 2011.10.25
  • Published : 2011.11.27

Abstract

The very high temperature gas reactor (VHTR) is one of the next generation nuclear reactors for its safety, long-term stability, and proliferation-resistance. The high operating temperature of over 800$^{\circ}C$ enables various applications with high energy efficiency. Heat is transferred from the primary helium loop to the secondary helium loop through the intermediate heat exchanger (IHX). The IHX material requires creep resistance, oxidation resistance, and corrosion resistance in a helium environment at high operating temperatures. A Ni-based superalloy such as Alloy 617 is considered as a primary candidate material for the intermediate heat exchanger. In this study, the microstructures of Alloy 617 crept in pure helium and air environments at 950$^{\circ}C$ were observed. The rupture time in helium was shorter than that in air under small applied stresses. As the exposure time increased, the thickness of outer oxide layer of the specimens clearly increased but delaminated after a long creep time. The depth of the carbide-depleted zone was rather high in the specimens under high applied stress. The reason was elucidated by the comparison between the ruptured region and grip region of the samples. It is considered that decarburization caused by minor gas impurities in a helium environment caused the reduction in creep rupture time.

Keywords

References

  1. J. Bouchard and R. Bennett, Nucl. Plant J., 26(5), 42 (2008).
  2. W. Ren and R Swimdeman, J. Press. Vess. Tech., 131, 024002 (2009). https://doi.org/10.1115/1.2967885
  3. Special Metals Publication, Number SMC-029, INCONEL Alloy 617 (2005). Special Metals Publication, Number SMC-029, INCONEL Alloy 617, (2005). Special Metals on the web. Retrieved Sep. 10, 2011 from http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf.
  4. H. -J. Christ, U. Kunecke, K. Meyer and G. Sockel, Mater. Sci. Eng., 87, 161 (1987). https://doi.org/10.1016/0025-5416(87)90374-0
  5. B. Huchtemann, Mater. Sci. Eng., 120-121, 623 (1989). https://doi.org/10.1016/0921-5093(89)90824-1
  6. R. H. Cook, Nucl. Tech., 66, 283 (1984).
  7. Y. Hosoi and S. Abe, Metall. Mater. Trans., 6A, 1171 (1975).
  8. P. S. Shankar and K. Natesan, J. Nucl. Mater., 366, 28 (2007). https://doi.org/10.1016/j.jnucmat.2006.12.028
  9. F. Rouillard, C. Cabet, K. Wolski, A. Terlain, M. Tabarant, M. Pijolat and F. Valdivieso, J. Nucl. Mater., 362, 248 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.049
  10. C. Cabet and F. Rouillard, J. Nucl. Mater., 392, 235 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.029
  11. T. S. Jo, S. -H. Kim, D. -G. Kim, J. Y. Park and Y. D. Kim, Met. Mater. Int., 14(6), 739 (2008). https://doi.org/10.3365/met.mat.2008.12.739
  12. C. Jang, D. Lee and D. Kim, Int. J. Pres. Ves. Pip., 85, 368 (2008). https://doi.org/10.1016/j.ijpvp.2007.11.010
  13. D. Kim, C. Jang and W. S. Ryu, Oxid. Met., 71, 271 (2009). https://doi.org/10.1007/s11085-009-9142-5
  14. D. -J. Kim, G. -G. Lee, S. W. Kim and H. P. Kim, Corrosion Sci. Tech., 9(4), 164 (2010).
  15. D. -J. Kim, G. -G. Lee, S. J. Jeong, W. -G. Kim and J. Y. Park, Nucl. Eng. Technol., 43(5), 429 (2011). https://doi.org/10.5516/NET.2011.43.5.429
  16. H. -C. Kwon, D. -J. Kim, H. P. Kim, J. Y. Park and S. D. Hong, Kor. J. Mater. Res., 21(1), 1 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.1.001
  17. W. J. Lee, Y. W. Kim and J. Chang, Nucl. Eng. Technol. 41(4), 413 (2009).
  18. T. C. Totemeier and H. Tian, Mater. Sci. Eng., 468-470, 81 (2007). https://doi.org/10.1016/j.msea.2006.10.170
  19. W. -G. Kim, S. -N. Yin and G. -H. Koo, Met. Mater. Int., 15(5), 727 (2009). https://doi.org/10.1007/s12540-009-0727-3
  20. S. Kihara, J. B. Newkirk, A. Ohtomo and Y. Saiga, Metall. Mater. Trans., 11, 1019 (1980). https://doi.org/10.1007/BF02654716

Cited by

  1. High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor vol.12, pp.2, 2013, https://doi.org/10.14773/cst.2013.12.2.102