DOI QR코드

DOI QR Code

Ultra-trace Arsenic Determination in Urine and Whole Blood Samples by Flow Injection-Hydride Generation Atomic Absorption Spectrometry after Preconcentration and Speciation Based on Dispersive Liquid-Liquid Microextraction

  • Shirkhanloo, Hamid (Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology) ;
  • Rouhollahi, Ahmad (Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology) ;
  • Mousavi, Hassan Zavvar (Department of Chemistry, College of Science, Semnan University)
  • 투고 : 2011.02.03
  • 심사 : 2011.08.06
  • 발행 : 2011.11.20

초록

A noble method for pre-concentration and speciation of ultra trace As (III) and As (V) in urine and whole blood samples based on dispersive liquid-liquid microextraction (DLLME) has been developed. In this method, As (III) was complexed with ammonium pyrrolidine dithiocarbamate at pH = 4 and Then, As (III) was extracted into the ionic liquid (IL). Finally, As (III) was back-extracted from the IL with hydrochloric acid (HCl) and its concentration was determined by flow injection coupled with hydride generation atomic absorption spectrometry (FI-HGAAS). Total amount of arsenic was determined by reducing As (V) to As (III) with potassium iodide (KI) and ascorbic acid in HCl solution and then, As (V) was calculated by the subtracting the total arsenic and As (III) content. Under the optimum conditions, for 5-15 mL of blood and urine samples, the detection limit ($3{\sigma}$) and linear range were achieved 5 ng $L^{-1}$ and 0.02-10 ${\mu}g\;L^{-1}$, respectively. The method was applied successfully to the speciation and determination of As (III) and As (V) in biological samples of multiple sclerosis patients with suitable precision results (RSD < 5%). Validation of the methodology was performed by the standard reference material (CRM).

키워드

참고문헌

  1. Hughes, M. F. J. Toxicol. Lett. 2002, 133, 1. https://doi.org/10.1016/S0378-4274(02)00084-X
  2. Sounderajan, S.; Udas, A. C.; Venkataraman, B. J. Hazard. Mater. 2007, 149, 238. https://doi.org/10.1016/j.jhazmat.2007.07.035
  3. Arsenic, Agency for Toxic Substances and Disease Registry (ATSDR), January, 2006.
  4. Templeton, D. M.; Ariese, F.; Cornelis, R.; Danielsson, L.; Muntau, H.; Van Leeuwen, H. P.; Lobinski, R. J. Pure. Appl. Chem. 2000, 72, 1453. https://doi.org/10.1351/pac200072081453
  5. Tongesayi, T.; Smart, R. B. J. Environ. Chem. 2006, 3, 137. https://doi.org/10.1071/EN05095
  6. Barnett, M. H.; Prineas, J. W. J. Ann. Neurol. 2004, 55, 458. https://doi.org/10.1002/ana.20016
  7. Kachev, D.; Mimmack, M. L.; Huffaker, S. J.; Ryan, M.; Bahn, S. Int. J. Neuropsychopharmacol. 2007, 10, 557. https://doi.org/10.1017/S1461145706007334
  8. Stenehjem, A. E.; Vahter, M.; Nermell, B.; Aasen, J.; Morland, J. J. Clinic. Toxic. 2007, 45, 424. https://doi.org/10.1080/15563650701232489
  9. Nam, S.; Oh, H.; Min, H.; Lee, J. Microchem J. 2010, 95, 20. https://doi.org/10.1016/j.microc.2009.08.009
  10. Kuenstl, L.; Griesel, S.; Prange, A.; Goessler, W. J. Environ. Chem. 2009, 6, 319. https://doi.org/10.1071/EN08079
  11. Dobran, S.; Zagury, G. J. Sci. Total Environ. 2006, 364, 239. https://doi.org/10.1016/j.scitotenv.2005.06.006
  12. Elci, L.; Divrikli, U.; Soylak, M. Int. J. Environ. Anal. Chem. 2008, 88, 711. https://doi.org/10.1080/03067310802094984
  13. Koh, J.; Kwon, Y.; Pak, Y. Microchem J. 2005, 80, 195. https://doi.org/10.1016/j.microc.2004.07.011
  14. Rodriguez, I. B.; Raber, G.; Goessler, W. Food Chem. J. 2009, 112, 1084. https://doi.org/10.1016/j.foodchem.2008.06.054
  15. Kumar, A. R.; Riyazuddin, P. Int J. Environ. An. Ch. 2008, 88, 255. https://doi.org/10.1080/03067310701629278
  16. Bundaleska, J. M.; Stafilov, T.; Arpadjan, S. Int. J. Environ. An. Ch. 2005, 85, 199. https://doi.org/10.1080/03067310412331334835
  17. El-Hadri, F.; Morales-Rubio, A.; Guardia, M. Food Chem. J. 2007, 105, 1195. https://doi.org/10.1016/j.foodchem.2007.02.025
  18. Ojeda, C. B.; Rojas, F. S.; Pavón, J. M. C. Anal. Bioanal. Chem. 2005, 382, 513. https://doi.org/10.1007/s00216-004-2691-1
  19. Serafimovski, I.; Karadjova, I. B.; Stafilov, T.; Tsalev, D. L. Microchem J. 2006, 83, 55. https://doi.org/10.1016/j.microc.2006.01.021
  20. Kumar, A. R.; Riyazuddin, P. Int. J. Environ. An. Ch. 2007, 87, 469. https://doi.org/10.1080/03067310601170415
  21. Dugo, G.; La Pera, L.; Turco, V. Lo.; Di Bella, G. J.Chemosphere 2005, 61, 1093. https://doi.org/10.1016/j.chemosphere.2005.03.049
  22. Zih-Perenyi, K.; Jankovics, P.; Sugar, E.; Lasztity, A. J. Spectrochim Acta 2008, 63, 445. https://doi.org/10.1016/j.sab.2007.12.003
  23. Correia, C. L. T.; Gonçalves, R. A.; Azevedo, M. S.; Vieira, M. A.; Campos, R.C. Microchem J. 2010, 96, 157. https://doi.org/10.1016/j.microc.2010.03.004
  24. Sun, Y. C.; Yang, J. Y. Anal. Chim. Acta 1999, 395, 293. https://doi.org/10.1016/S0003-2670(99)00321-9
  25. Zhang, L.; Morita, Y.; Sakuragawa, A.; Isozaki, A. Talanta 2007, 72, 723. https://doi.org/10.1016/j.talanta.2006.12.001
  26. Komjarova, I.; Blust, R. Anal. Chim. Acta 2006, 576, 221. https://doi.org/10.1016/j.aca.2006.06.002
  27. Anezaki, K.; Nukatsuka, L.; Ohzeki, K. Anal. Sci. J. 1999, 5, 829.
  28. Farahani, H.; Norouzi, P.; Dinarvand, R.; Ganjali, M. R. J. Chromatogr. A 2007, 1172, 105. https://doi.org/10.1016/j.chroma.2007.10.001
  29. Birjandi, A. P.; Bidari, A.; Rezaei, F.; Hosseini, M. R. M.; Assadi, Y. J. Chromatogr. A 2008, 1193, 19. https://doi.org/10.1016/j.chroma.2008.04.003
  30. Kowalska, J.; Stryjewska, E.; Szymánski, P.; Golimowski, J. Electroanalysis 1999, 11, 1301. https://doi.org/10.1002/(SICI)1521-4109(199911)11:17<1301::AID-ELAN1301>3.0.CO;2-Q
  31. Chunhai, Y.; Qiantao, C.; Zhong, G.; Zhaoguang, Y.; Soo, B. K. Spectrochimica Acta Part B 2003, 58, 1335. https://doi.org/10.1016/S0584-8547(03)00079-X
  32. Tuzen, M.; Citak, D.; Soylak, M. Talanta 2009, 78, 52. https://doi.org/10.1016/j.talanta.2008.10.035
  33. Mahnaz, G.; Mohammad, R. K. Z.; Yadollah, Y.; Ali, E.; Najmeh, Y. Talanta 2010, 81, 197. https://doi.org/10.1016/j.talanta.2009.11.056
  34. Ricardo, E. R.; Ignacio, L. G.; Manuel, H. C. Spectrochimica Acta Part B 2009, 64, 329. https://doi.org/10.1016/j.sab.2009.03.007
  35. Pei, L.; Lili, P.; Ping, Y. Microchim Acta 2009, 166, 47. https://doi.org/10.1007/s00604-009-0162-2
  36. An-na, T.; Guo-sheng, D.; Xiu-ping, Y. Talanta 2005, 67, 942. https://doi.org/10.1016/j.talanta.2005.04.016

피인용 문헌

  1. The present state of coupling of dispersive liquid–liquid microextraction with atomic absorption spectrometry vol.28, pp.1, 2013, https://doi.org/10.1039/C2JA30175J
  2. Atomic spectrometry update. Clinical and biological materials, foods and beverages vol.28, pp.4, 2013, https://doi.org/10.1039/c3ja90005c
  3. Bioanalytical separation and preconcentration using ionic liquids vol.405, pp.24, 2013, https://doi.org/10.1007/s00216-013-6950-x
  4. Five Years of Dispersive Liquid–Liquid Microextraction vol.48, pp.3, 2013, https://doi.org/10.1080/05704928.2012.697087
  5. Biological monitoring of arsenic pollution based on whole blood arsenic atomic absorption assessment with in situ hydride trapping vol.29, pp.10, 2014, https://doi.org/10.1039/C4JA00130C
  6. Current developments in clinical sample preconcentration prior to elemental analysis by atomic spectrometry: a comprehensive literature review vol.29, pp.2, 2014, https://doi.org/10.1039/C3JA50316J
  7. In-vitro Aluminum Determination and Preconcentration in Blood of Dialysis Patients Based on Ionic Liquid Dispersive Liquid-Liquid Biomicroextraction by 2-Amino-3-(1H-imidazol-4-yl)propanoic Acid vol.61, pp.8, 2014, https://doi.org/10.1002/jccs.201300531
  8. Ten years of dispersive liquid–liquid microextraction and derived techniques vol.52, pp.4, 2017, https://doi.org/10.1080/05704928.2016.1224240
  9. Hematotoxicity status of lead and three other heavy metals in cow slaughtered for human consumption in Jos, Nigeria vol.9, pp.9, 2017, https://doi.org/10.5897/JTEHS2017.0399
  10. Dispersive liquid-liquid microextraction: trends in the analysis of biological samples vol.7, pp.17, 2011, https://doi.org/10.4155/bio.15.141
  11. Ionic liquids in biological monitoring for exposure assessments vol.344, pp.None, 2011, https://doi.org/10.1016/j.molliq.2021.117732