DOI QR코드

DOI QR Code

Self-cleaning Properties of TiO2-SiO2-In2O3 Nanocomposite Thin Film

  • Eshaghi, Akbar (Faculty of Materials Science and Engineering, Maleke Ashtar University of Technology) ;
  • Eshaghi, Ameneh (Sari Branch, Islamic Azad University)
  • Received : 2011.07.26
  • Accepted : 2011.09.14
  • Published : 2011.11.20

Abstract

$TiO_2-SiO_2-In_2O_3$ nanocomposite thin film was deposited on the glass substrates using a dip coating technique. The morphology, surface composition, surface hydroxyl groups, photocatalytic activity and hydrophilic properties of the thin film were investigated by AFM, XPS, methyl orange decoloring rate and water contact angle measurements. The hydroxyl content for $TiO_2$, $TiO_2-SiO_2$ and $TiO_2-SiO_2-In_2O_3$ nanocomposite films was calculated to be 11.6, 17.1 and 20.7%, respectively. $TiO_2-SiO_2-In_2O_3$ film turned superhydrophilic after 180-min irradiation with respect to pure $TiO_2$ and $TiO_2-SiO_2$ thin films. The photocatalytic decomposition of methyl orange for $TiO_2$, $TiO_2-SiO_2$ and $TiO_2-SiO_2-In_2O_3$ thin films was measured as 38.19, 58.71 and 68.02%, respectively. The results indicated that $SiO_2$ and $In_2O_3$ had a significant effect on the hydrophilic, photocatalytic and self-cleaning properties of $TiO_2$ thin film.

Keywords

References

  1. Euvananont, C.; Junin, C.; Inpor, K.; Limthongkul, P.; Thanachayanont, C. Ceram. Inter. 2008, 34, 1067. https://doi.org/10.1016/j.ceramint.2007.09.043
  2. Cai, R.; Van, G. M.; Aw, P. K.; Itoh, K. C. R. Chimie. 2006, 9, 829. https://doi.org/10.1016/j.crci.2005.04.007
  3. Fujishima, A.; Zhang, X. T. C. R. Chimie. 2006, 9, 750. https://doi.org/10.1016/j.crci.2005.02.055
  4. Guan, K. Surf. Coat. Technol. 2005, 191, 155. https://doi.org/10.1016/j.surfcoat.2004.02.022
  5. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 431. https://doi.org/10.1038/41233
  6. Karuppuchamy, S.; Jeong, J. M.; Amalnerkar, D. P.; Minour, H. Vacuum 2006, 80, 494. https://doi.org/10.1016/j.vacuum.2005.06.005
  7. Yu, J.; Zhao, X.; Zhao, Q.; Wang, G. Mater. Chem & Phys. 2001, 68, 253. https://doi.org/10.1016/S0254-0584(00)00364-3
  8. Kesmez, O.; Camurlu, H. E.; Burunkaya, E.; Arpac, E. Solar Energy Mater and Solar Cells 2009, 93, 1833. https://doi.org/10.1016/j.solmat.2009.06.022
  9. Machida, M.; Norimoto, K.; Watanabe, T.; Hashimoto, K.; Fujishima, A. J. Mater. Sci. 1999, 34, 2569. https://doi.org/10.1023/A:1004644514653
  10. Shchukin, D.; Poznyak, S.; Kulak, A.; Sviridov, P. P. J. Photochem. Photobiol. A Chem. 2004, 162, 423. https://doi.org/10.1016/S1010-6030(03)00386-1
  11. Skorb, E. V.; Ustinovich, E. A.; Kulak, A. I.; Sviridov, D. V. J. Photoche. Photobiol. A Chem. 2008, 193, 97. https://doi.org/10.1016/j.jphotochem.2007.06.012
  12. Eshaghi, A.; Dashti, A.; Eshaghi, A.; Mozaffarinia, R. Mate. Sci. Pol. 2011, 29, 22. https://doi.org/10.2478/s13536-011-0005-9
  13. Sharma, S. D.; Singh, D.; Saini, K. K.; Kant, C.; Sharma, V.; Jain, S. C.; Sharma, C. P. Appl. Catal. A 2006, 314, 40. https://doi.org/10.1016/j.apcata.2006.07.029
  14. Chen, L.; Tian, J.; Qiu, H.; Yin, Y.; Wang, X.; Dai, J.; Wu, P.; Wang, A.; Chu, L. Ceram. Inter. 2009, 35, 3275. https://doi.org/10.1016/j.ceramint.2009.05.021
  15. Wang, J.; Guo, B.; Zhang, X.; Han, J.; Wu, J. Ultrason Sonochem 2005, 12, 331. https://doi.org/10.1016/j.ultsonch.2004.05.002
  16. Tian, H.; Ma, J.; Li, K.; Li, J. Ceram. Inter. 2009, 35, 1289. https://doi.org/10.1016/j.ceramint.2008.05.003
  17. Chen, J.; Yao, M.; Wang, X. J. Nanopart. Res. 2008, 10, 163.
  18. Yu, J. C.; Yu, J.; Ho, W.; Zhao, J. J. Photochem. Photobiol. A Chem. 2002, 148, 331. https://doi.org/10.1016/S1010-6030(02)00060-6
  19. Guan, K.; Yin, Y. Mater. Chem. Phys. 2005, 92, 10. https://doi.org/10.1016/j.matchemphys.2004.01.044
  20. Gonzalez, V. R.; Rodr guez, A. M.; May, M.; Tzompantzi, F.; Gomez, R. J. Photochem. Photobiol. A Chem. 2008, 193, 266. https://doi.org/10.1016/j.jphotochem.2007.07.005
  21. Carter, C. B.; Norton, M. G. Ceramic Materials; Science and Technology; Springer: New York, 2007.
  22. Negishi, N.; Iyoda, T.; Hashimoto, K.; Fujishima, A. Chem. Lett. 1995, 24, 841.
  23. Garcia, J. C.; Takashima, K. J. Photochem. Photobiol. A 2003, 155, 215. https://doi.org/10.1016/S1010-6030(02)00370-2
  24. Ollis, D. F.; Pelizzetti, E.; Serpone, N. Environ. Sci. Technol. 1991, 25, 1523.
  25. Anheden, M.; Goswami, D. Y.; Svedberg, G. J. Solar Energy Eng. 1996, 118, 2. https://doi.org/10.1115/1.2847912
  26. Eshaghi, A.; Mozaffarinia, R.; Pakshir, M.; Eshaghi, A. Ceram. Inter. 2011, 37, 327. https://doi.org/10.1016/j.ceramint.2010.09.008

Cited by

  1. Self-Cleaning Properties of Vanadium Doped TiO<sub>2</sub> Sol-Gel Derived Thin Films vol.03, pp.03, 2013, https://doi.org/10.4236/njgc.2013.33014
  2. Photocatalytic and self-cleaning properties of SiO2/TiO2/SiO2 nanostructured thin film vol.104, pp.12, 2013, https://doi.org/10.3139/146.110976