DOI QR코드

DOI QR Code

Recent advances in microfluidic technologies for biochemistry and molecular biology

  • Cho, Soong-Won (Department of Chemistry, Imperial College London) ;
  • Kang, Dong-Ku (Department of Chemistry, Imperial College London) ;
  • Choo, Jae-Bum (Department of Bionano Engineering, Hanyang University) ;
  • Demllo, Andrew J. (Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences) ;
  • Chang, Soo-Ik (Department of Biochemistry, Chungbuk National University)
  • Received : 2011.11.22
  • Published : 2011.11.30

Abstract

Advances in the fields of proteomics and genomics have necessitated the development of high-throughput screening methods (HTS) for the systematic transformation of large amounts of biological/chemical data into an organized database of knowledge. Microfluidic systems are ideally suited for high-throughput biochemical experimentation since they offer high analytical throughput, consume minute quantities of expensive biological reagents, exhibit superior sensitivity and functionality compared to traditional micro-array techniques and can be integrated within complex experimental work flows. A range of basic biochemical and molecular biological operations have been transferred to chip-based microfluidic formats over the last decade, including gene sequencing, emulsion PCR, immunoassays, electrophoresis, cell-based assays, expression cloning and macromolecule blotting. In this review, we highlight some of the recent advances in the application of microfluidics to biochemistry and molecular biology.

Keywords

References

  1. Hong, J., Edel, J. and deMello, A. J. (2009) Micro-and nanofluidic systems for high-throughput biological screening. Drug Discov. Today 14, 134-146. https://doi.org/10.1016/j.drudis.2008.10.001
  2. Liu, P. and Mathies, R. A. (2009) Integrated microfluidic systems for high-performance genetic analysis. Trends Biotechnol. 27, 572-581. https://doi.org/10.1016/j.tibtech.2009.07.002
  3. deMello, A. J. (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442, 394-402. https://doi.org/10.1038/nature05062
  4. Whitesides, G. M. (2006) The origins and the future of microfluidics. Nature 442, 368-373. https://doi.org/10.1038/nature05058
  5. Liu, K. and Fan, Z. H. (2011) Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst. 136, 1288-1297. https://doi.org/10.1039/c0an00969e
  6. Kartalov, E. P. and Quake, S. R. (2004) Microfluidic device reads up to four consecutive base pairs in DNA sequencing-by-synthesis. Nucl. Acids Res. 32, 2873-2879. https://doi.org/10.1093/nar/gkh613
  7. Fredlake, C. P., Hert, D. G., Kan, C.-W., Chiesl, T. N., Root, B. E., Forster, R. E. and Barron, A. E. (2008) Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes. Proc. Natl. Acad. Sci. U.S.A. 105, 476-481. https://doi.org/10.1073/pnas.0705093105
  8. Blazej, R. G., Kumaresan, P., Cronler, S. A. and Mathies, R. A. (2007) Inline injection microdevice for attomole-scale sanger DNA sequencing. Anal. Chem. 79, 4499-4506. https://doi.org/10.1021/ac070126f
  9. Blazej, R. G., Kumaresan, P. and Mathies, R. A. (2006) Microfabricated bioprocessor for integrated nanoliter-scale sanger DNA sequencing. Proc. Natl. Acad. Sci. U.S.A. 103, 7240-7245. https://doi.org/10.1073/pnas.0602476103
  10. Aborn, J. H., El-Difrawy, S. A., Novotny, M., Gismondi, E. A., Lam, R., Matsudaira, P., Mckenna, B. K., O'Neil, T., Streechon, P. and Ehrlich, D. J. (2005) A 768-lane microfabricated system for high-throughput DNA sequencing. Lab. Chip. 5, 669-674. https://doi.org/10.1039/b501104c
  11. Kumagai, H., Utsunomiya, S., Nakamura, S., Yamamoto, R., Harada, A., Kaji, T., Hazama, M., Ohashi, T., Inami, A., Ikegami, T., Miyamoto, K., Endo, N., Yoshimi, K., Toyoda, A. and Hattori, M. (2008) Large-scale microfabricated channel plates for high-throughput, fully automated DNA sequencing. Electrophoresis 29, 4723-4732. https://doi.org/10.1002/elps.200800301
  12. Novak, R., Zeng, Y., Shuga, J., Venugopalan, G., Fletcher, D. A., Smith, M. T. and Mathies, R. A. (2011) Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions. Angew. Chem. Int. Ed. 50, 390-395. https://doi.org/10.1002/anie.201006089
  13. Kong, D. S., Carr, P. A., Chen, L., Zhang, S. and Jacobson, J. M. (2007) Parallel gene synthesis in a microfluidic device. Nucl. Acids Res. 35, e61. https://doi.org/10.1093/nar/gkm121
  14. Lee, C.-C., Snyder, T. M. and Quake, S. R. (2010) A microfluidic oligonucleotide synthesizer. Nucl. Acids Res. 38, 2514-2521. https://doi.org/10.1093/nar/gkq092
  15. Kosuri, S., Eroshenko, N., LeProust, E. M., Super, M., Way, J., Li, J. B. and Church, G. M. (2010) Scalable gene synthesis by selective amplification of DNA pools from high fidelity microchips. Nat. Biotechnol. 28, 1295-1301. https://doi.org/10.1038/nbt.1716
  16. Schaerli, Y., Wootton, R. C., Robinson, T., Stein, V., Dunsby, C., Neil, M. A. A., French, P. M. W., deMello, A. J., Abell, C. and Hollfelder, F. (2009) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem. 81, 302-306. https://doi.org/10.1021/ac802038c
  17. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol., 51, 263-273. https://doi.org/10.1101/SQB.1986.051.01.032
  18. Kopp, M. U., de Mello, A. J. and Manz, A. A. (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280, 1046-1048. https://doi.org/10.1126/science.280.5366.1046
  19. Tewhey, R., Warner, J. B., Nakano, M., Libby, B., Medkova, M., David, P. H., Kotsopoulos, S. K., Samuels, M. L., Hutchison, J. B., Larson, J. W., Topol, E. J., Weiner, M. P., Harismendy, O., Olson, J., Link, D. R. and Frazer, K. A. (2009) Microdroplet-based PCR enrichment for large scale targeted sequencing. Nat. Biotechnol. 27, 1025-1034. https://doi.org/10.1038/nbt.1583
  20. Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J. C., Marquez, M., Klibanov, A. M., Griffiths, A. D. and Weitz, D. A. (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. U.S.A. 107, 4004-4009. https://doi.org/10.1073/pnas.0910781107
  21. Lion, N., Rohner, T. C., Dayon, L., Arnaud, I. L., Damoc, E., Youhnovski, N., Wu, Z.-Y., Roussel, C., Josserand, J., Jensen, H., Rossier, J. S., Przybylski, M. and Girault, H. H. (2003) Microfluidic systems in proteomics. Electrophoresis 24, 3533-3562. https://doi.org/10.1002/elps.200305629
  22. Zheng, B., Roach, L. S. and Ismagilov, R. F. (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125, 11170-11171. https://doi.org/10.1021/ja037166v
  23. Zheng, B., Tice, J. D., Roach, L. S. and Ismagilov, R. F. (2004) A droplet based, composite PDMS/Glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction. Angew. Chem. Int. Ed. 43, 2508-2511. https://doi.org/10.1002/anie.200453974
  24. Gerdts, C. J., Tereshko, V., Yadav, M. K., Dementieva, I., Collart, F., Joachimiak, A., Stevens, R. C., Kuhn, P., Kossiakoff, A. and Ismagilov, R. F. (2006) Time-controlled microfluidic seeding in nl-volume droplets to separate nucleation and growth stages of protein crystallization. Angew. Chem. Int. Ed. 45, 8156-8160. https://doi.org/10.1002/anie.200602946
  25. Kreutz, J. E., Li, L., Roach, L. S., Hatakeyama, T. and Ismagilov, R. F. (2009) Laterally mobile, functionalized self-assembled monolayers at the fluorous aqueous interface in a plug based microfluidic system; characterization and testing with membrane protein crystallization. J. Am. Chem. Soc. 131, 6042-6043. https://doi.org/10.1021/ja808697e
  26. Srisa-Art, M., Kang, D., Hong, J., Park, H., Leatherbarrow, R. J., Edel, J. B., Chang, S. and deMello, A. J. (2009) Analysis of protein-protein interactions by using droplet based microfluidics. Chembiochem. 10, 1605-1611. https://doi.org/10.1002/cbic.200800841
  27. Moorthy, J., Burgess, R., Yethiraj, A. and Beebe, D. J. (2007) Microfluidic based platform for characterization of protein interactions in hydrogel nanoenvironments. Anal. Chem. 79, 5322-5327. https://doi.org/10.1021/ac070226l
  28. Gerber, D., Maerkl, S. J. and Quake, S. R. (2009) An in vitro microfluidic approach to generating protein-interaction networks. Nat. Methods 6, 71-74. https://doi.org/10.1038/nmeth.1289
  29. He, M. and Herr, A. E. (2009) Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis. Anal. Chem. 81, 8177-8184. https://doi.org/10.1021/ac901392u
  30. Sikanen, T., Tuomikoski, S., Ketola, R. A., Kostiainen, R., Franssila, S. and Kotiaho, T. (2007) Fully microfabricated and integrated SU-8-based capillary electrophoresis-electrospray ionization microchips for mass spectrometry. Anal. Chem. 79, 9135-9144. https://doi.org/10.1021/ac071531+
  31. Zheng, B., Gerdts, C. J. and Ismagilov, R. F. (2005) Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Curr. Opin. Struct. Biol. 15, 548-555. https://doi.org/10.1016/j.sbi.2005.08.009
  32. Zheng, B., Roach, L. S. and Ismagilov, R. F. (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-sized droplets. J. Am. Chem. Soc. 125, 11170-11171. https://doi.org/10.1021/ja037166v
  33. Meyvantsson, I. and Beebe, D. J. (2008) Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1, 423-449. https://doi.org/10.1146/annurev.anchem.1.031207.113042
  34. El-Ali, J., Sorger, P. K. and Jensen, K. F. (2006) Cells on chips. Nature 442, 403-411. https://doi.org/10.1038/nature05063
  35. Kim, L., Toh, Y.-C., Voldman, J. and Yu, H. (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab. Chip. 7, 681-694 https://doi.org/10.1039/b704602b
  36. Goto, M., Sato, K., Murakami, A., Tokeshi, M. and Kitamori, T. (2005) Development of a microchip-based bioassay system using cultured cells. Anal. Chem. 77, 2125-2131. https://doi.org/10.1021/ac040165g
  37. Urbanski, J. P., Johnson, M. T., Craig, D. D., Potter, D. L., Gardner, D. K. and Thorsen, T. (2008) Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos. Anal. Chem. 80, 6500-6507. https://doi.org/10.1021/ac8010473
  38. Clark, A. M., Sousa, K. M., Jennings, C., MacDougald, O. A. and Kennedy, R. T. (2009) Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes. Anal. Chem. 81, 2350-2356. https://doi.org/10.1021/ac8026965
  39. Huebner, A., Olguin, L. F., Bratton, D., Whyte, G., Huck, W. T. S., deMello, A. J., Edel, J. B., Abell, C. and Hollfelder, F. (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal. Chem. 80, 3890-3896. https://doi.org/10.1021/ac800338z
  40. Shim, J.-U., Olguin, L. F., Whyte, G., Scott, D., Babtie, A., Abell, C., Huck, W. T. S. and Hollfelder, F. (2009) Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J. Am. Chem. Soc. 131, 15251-15256. https://doi.org/10.1021/ja904823z
  41. Baret, J. C., Ryckelynck, M., El-Harrak, A., Frenz, L., Rick, C., Samuels, M. L., Hutchison, J. B., Agresti, J. J., Link, D. R., Weitz, D. A. and Griffiths, A. D. (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab. Chip. 9, 1850-1858. https://doi.org/10.1039/b902504a
  42. Ng, A. H. C., Uddayasankar, U. and Wheeler, A. R. (2010) Immunoassays in microfluidic systems. Anal. Bioanal. Chem. 397, 991-1007. https://doi.org/10.1007/s00216-010-3678-8
  43. Feldman, H. C., Sigurdson, M. and Meinhart, C. D. (2007) AC electrothermal enhancement of heterogeneous assays in microfluidics. Lab. Chip. 7, 1553-1559. https://doi.org/10.1039/b706745c
  44. Delamarche, E., Bernard, A., Schimid, H., Michel, B. and Biebuyck, H. (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276, 779-781. https://doi.org/10.1126/science.276.5313.779
  45. Sato, K., Tokeshi, M., Odake, T., Kimura, H., Ooi, T., Nakao, M. and Kitamori, T. (2000) Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin a on polystyrene beads in a microchip. Anal. Chem. 72, 1144-1147. https://doi.org/10.1021/ac991151r
  46. Sato, K., Tokeshi, M., Kimura, H. and Kitamori, T. (2001) Determination of carcinoembryonic antigen in human sera by integrated bead-bed immuoassay in a microchip for cancer diagnosis. Anal. Chem. 73, 1213-1218. https://doi.org/10.1021/ac000991z
  47. Sato, K., Yamanaka, M., Takahashi, H., Tokeshi, M., Kimura, H. and Kitamori, T. (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon gamma. Electrophoresis 23, 734-739. https://doi.org/10.1002/1522-2683(200203)23:5<734::AID-ELPS734>3.0.CO;2-W
  48. Sato, K., Yamanaka, M., Hagino, T., Tokeshi, M., Kimura, H. and Kitamori, T. (2004) Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection. Lab. Chip. 4, 570-575. https://doi.org/10.1039/b411356j
  49. Yang, Y., Nam, S., Lee, N., Kim, Y. and Park, S. (2008) Superporous agarose beads as a solid support for microfluidic immunoassay. Ultra-microscopy 108, 1384-1389.
  50. Cheng, S. B., Skinner, C., Taylor, J., Attiya, S., Lee, W. E., Picelli, G. and Harrison, D. J. (2001) Development of a multi-channel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal. Chem. 73, 1472-1479. https://doi.org/10.1021/ac0007938
  51. Qiu, C. X. and Harrison, D. J. (2001) Integrated self-calibration via electrokinetic solvent proportioning for microfluidic immunoassays. Electrophoresis 22, 3949-3958. https://doi.org/10.1002/1522-2683(200110)22:18<3949::AID-ELPS3949>3.0.CO;2-7
  52. Herr, A. E., Hatch, A. V., Throckmorton, D. J., Tran, H. M., Brennan, J. S., Giannobile, W. V. and Singh, A. K. (2007) Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. U.S.A. 104, 5268-5273. https://doi.org/10.1073/pnas.0607254104
  53. He, M. and Herr, A. E. (2010) Polyacrylamide gel photopatterning enables automated protein immunoblotting in a two-dimensional microdevice. J. Am. Chem. Soc. 132, 2512-2513. https://doi.org/10.1021/ja910164d
  54. Kenyon, S. M., Meighan, M. M. and Hayes, M. A. (2011) Recent developments in electrophoretic separations on microfluidic devices. Electrophoresis 32, 482-493. https://doi.org/10.1002/elps.201000469
  55. Tran, N. T., Ayed, I., Pallandre, A. and Taverna, M. (2010) Recent innovations in protein separation on microchips by electrophoretic methods: an update. Electrophoresis 31, 147-173. https://doi.org/10.1002/elps.200900465
  56. Fonslow, B. R. and Bowser, M. T. (2008) Fast electrophoretic separation optimization using gradient micro free-flow electrophoresis. Anal. Chem. 80, 3182-3189. https://doi.org/10.1021/ac702367m
  57. Kostal, V., Fonslow, B. R., Arriaga, E. A. and Bowser, M. T. (2009) Fast determination of mitochondria electrophoretic mobility using micro free-flow electrophoresis. Anal. Chem. 81, 9267-9273. https://doi.org/10.1021/ac901508x
  58. Turgeon, R. T. and Bowser, M. T. (2009) Improving sensitivity in micro-free flow electrophoresis using signal averaging. Electrophoresis 30, 1342-1348. https://doi.org/10.1002/elps.200800497
  59. Zalewski, D. R., Kohleyer, D., Schlautmann, S. and Gardeniers, H. J. G. E. (2008) Synchronized, continuous-flow zone electrophoresis. Anal. Chem. 80, 6228-6234. https://doi.org/10.1021/ac800567n
  60. He, M. and Herr, A. E. (2010) Automated microfluidic protein immunoblotting. Nat. Protoc. 5, 1844-1856. https://doi.org/10.1038/nprot.2010.142
  61. Niu, X. Z., Zhang, B., Marszalek, R. T., Ces, O., Edel, J. B., Klug, D. R. and deMello, A. J. (2009) Droplet-based compartmentalization of chemically separated components in two-dimensional separations. Chem. Comm., 6159-6161.
  62. Kraytsberg, Y. and Khrapko, K. (2005) Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations. Expert Rev. Mol. Diagn. 5, 809-815. https://doi.org/10.1586/14737159.5.5.809
  63. Gervais, L. and Delamarche, E. (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab. Chip. 9, 3330-3337. https://doi.org/10.1039/b906523g
  64. Ferguson, B. S., Buchsbaum, S. F., Wu, T.-T., Hsieh, K., Xiao, Y., Sun, R. and Soh, H. T. (2011) Genetic analysis of H1N1 influenza virus from throat swab samples in a microfluidic system for point-of-care diagnostics. J. Am. Chem. Soc. 133, 9129-9135. https://doi.org/10.1021/ja203981w
  65. Park, S., Zhang, Y., Lin, S., Wang, T.-H. and Yang, S. (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol. Adv. 29, 830-839. https://doi.org/10.1016/j.biotechadv.2011.06.017
  66. Yeung, S. H. I., Seo, T. S., Crouse, C. A., Greenspoon, S. A., Chiesl, T. N., Ban, J. D. and Mathies, R. A. (2008) Fluorescence energy transfer-labeled primers for high-performance forensic DNA profiling. Electrophoresis 29, 2251-2259. https://doi.org/10.1002/elps.200700772
  67. Anglicheau, D., Sharma, V. K., Ding, R., Hummel, A., Snopkowski, C., Dadhania, D., Seshan, S. V. and Suthanthiran, M. (2009) MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl. Acad. Sci. U.S.A. 106, 5330-5335. https://doi.org/10.1073/pnas.0813121106
  68. Koirala, D., Yu, Z., Dhakal, S. and Mao, H. (2011) Detection of single nucleotide polymorphism using tension-dependent stochastic behavior of a single-molecule template. J. Am. Chem. Soc. 133, 9988-9991. https://doi.org/10.1021/ja201976r
  69. Fan, R., Vermesh, O., Srivastava, A., Yen, B. K. H., Qin, L., Ahmad, H., Kwong, G. A., Liu, C.-C., Gould, J., Hood, L. and Heath, J. R. (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26, 1373-1378. https://doi.org/10.1038/nbt.1507
  70. Henares, T. G., Mizutani, F. and Hisamoto, H. (2008) Current development in microfluidic immunosensing chip. Anal. Chim. Acta. 611, 17-30. https://doi.org/10.1016/j.aca.2008.01.064
  71. Granieri, L., Baret, J. C., Griffiths, A. D. and Merten, C. A. (2010) High throughput screening of enzymes by retroviral display using droplet based microfluidics. Chemistry & Biology 17, 229-235. https://doi.org/10.1016/j.chembiol.2010.02.011
  72. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B., Rothberg, J. M., Link, D. R., Perrimon, N. and Samuels, M. L. (2009) Droplet microfluidic technology for single cell high throughput screening. Proc. Natl. Acad. Sci. U.S.A. 106, 14195-14200. https://doi.org/10.1073/pnas.0903542106
  73. Wang, X., Amatatongchai, M., Nacapricha, D., Hofmann, O., de Mello, J. C., Bradley, D. D. C. and de Mello, A. J. (2009) Thin-film organic photodiodes for integrated on-chip chemiluminescence detection-application to antioxidant capacity screening. Sensor Actuat. B-Chem. 140, 643-648. https://doi.org/10.1016/j.snb.2009.04.068
  74. Yamazaki, M., Hofmann, O., Ryu, G., Xiaoe, L., Lee, T. K. and deMello, A. J. (2011) Non-emissive colour filters for fluorescence detection. Lab. Chip. 11, 1228-1233. https://doi.org/10.1039/c0lc00642d
  75. Ryu, G., Huang, J., Hofmann, O., Walshe, C. A., Sze, J. Y. Y., McClean, G. D., Mosley, A., Rattle, S. J., deMello, J. C., deMello, A. J. and Bradley, D. D. C. (2011) Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip. Lab. Chip. 11, 1664-1670. https://doi.org/10.1039/c0lc00586j
  76. Hofmann, O., Wang, X., deMello, J. C., Bradley, D. D. C. and deMello, A. J. (2005) Towards microalbuminuria determination on a disposable diagnostic microchip with integrated fluorescence detection based on thin-film organic light emitting diodes. Lab. Chip. 5, 863-868. https://doi.org/10.1039/b504551g
  77. Heyries, K. A., Tropini, C., VansInsberghe, M., Doolin, C., Petriv, O. I., Singhal, A., Leung, K., Hughesman, C. B. and Hansen, C. L. (2011) Megapixel digital PCR. Nat. Methods 8, 649-651. https://doi.org/10.1038/nmeth.1640

Cited by

  1. Integration of monolithic porous polymer with droplet-based microfluidics on a chip for nano/picoliter volume sample analysis vol.1, pp.1, 2014, https://doi.org/10.1186/s40580-014-0003-9
  2. High-Throughput Analysis of Protein–Protein Interactions in Picoliter-Volume Droplets Using Fluorescence Polarization vol.84, pp.8, 2012, https://doi.org/10.1021/ac300414g
  3. Spindle-shaped microfluidic chamber with uniform perfusion flows vol.15, pp.6, 2013, https://doi.org/10.1007/s10404-013-1195-8
  4. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor vol.6, pp.2, 2016, https://doi.org/10.3390/bios6020024
  5. Continuous and low error-rate passive synchronization of pre-formed droplets vol.5, pp.60, 2015, https://doi.org/10.1039/C5RA08044D
  6. Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions vol.10, pp.1, 2016, https://doi.org/10.1021/acsnano.5b04713
  7. Lab-chip HPLC with integrated droplet-based microfluidics for separation and high frequency compartmentalisation vol.48, pp.73, 2012, https://doi.org/10.1039/c2cc33774f
  8. Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves vol.14, pp.1-2, 2013, https://doi.org/10.1007/s10404-012-1036-1
  9. Fabrication and characterization of tosyl-activated magnetic and nonmagnetic monodisperse microspheres for use in microfluic-based ferritin immunoassay vol.29, pp.2, 2013, https://doi.org/10.1002/btpr.1683
  10. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis vol.13, pp.1, 2013, https://doi.org/10.1186/1472-6750-13-76
  11. Programmable active droplet generation enabled by integrated pneumatic micropumps vol.13, pp.2, 2013, https://doi.org/10.1039/C2LC40906B
  12. Point-of-care (POC) devices by means of advanced MEMS vol.145, 2015, https://doi.org/10.1016/j.talanta.2015.04.032
  13. A beveled working electrode coupled to a sandglass shape detection cell: A strategy to improve the sensitivity of electrochemiluminescence detection in microchip electrophoresis vol.90, 2013, https://doi.org/10.1016/j.electacta.2012.11.118
  14. Temperature-Shift Speed Dependence of Nonspecific Amplification of Polymerase Chain Reaction Examined by 1480 nm Photothermal Transition Speed Controllable High-Speed Polymerase Chain Reaction System vol.52, pp.6S, 2013, https://doi.org/10.7567/JJAP.52.06GK02
  15. Integrated pneumatic micro-pumps for high-throughput droplet-based microfluidics vol.4, pp.39, 2014, https://doi.org/10.1039/C4RA02033B
  16. Density-Gradient-Free Microfluidic Centrifugation for Analytical and Preparative Separation of Nanoparticles vol.14, pp.5, 2014, https://doi.org/10.1021/nl404771g
  17. Hydrodynamic Flow Confinement Technology in Microfluidic Perfusion Devices vol.3, pp.4, 2012, https://doi.org/10.3390/mi3020442
  18. Analysis of Membrane Behavior of a Normally Closed Microvalve Using a Fluid-Structure Interaction Model vol.8, pp.12, 2017, https://doi.org/10.3390/mi8120355
  19. Monolithic nano-porous polymer in microfluidic channels for lab-chip liquid chromatography vol.5, pp.1, 2018, https://doi.org/10.1186/s40580-018-0151-4