DOI QR코드

DOI QR Code

Molecular cloning and sequence and 3D models analysis of the Sec61α subunit of protein translocation complex from Penicillium ochrochloron

  • Azad, Abul Kalam (Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology) ;
  • Jahan, Md. Asraful (Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology) ;
  • Hasan, Md. Mahbub (Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology) ;
  • Ishikawa, Takahiro (Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University) ;
  • Sawa, Yoshihiro (Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University) ;
  • Shibata, Hitoshi (Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University)
  • Received : 2011.06.29
  • Accepted : 2011.08.17
  • Published : 2011.11.30

Abstract

The $Sec61{\alpha}$ subunit is the core subunit of the protein conducting channel which is required for protein translocation in eukaryotes and prokaryotes. In this study, we cloned a $Sec61{\alpha}$ subunit from Penicillium ochrochloron ($PoSec61{\alpha}$). Sequence and 3D structural model analysis showed that $PoSec61{\alpha}$ conserved the typical characteristics of eukaryotic and prokaryotic $Sec61{\alpha}$ subunit homologues. The pore ring known as the constriction point of the channel is formed by seven hydrophobic amino acids. Two methionine residues from transmembrane ${\alpha}$-helice 7 (TM7) contribute to the pore ring formation and projected notably to the pore area and narrowed the pore compared with the superposed residues at the corresponding positions in the crystal structures or the 3D models of the $Sec61{\alpha}$ subunit homologues in archaea or other eukaryotes, respectively. Results reported herein indicate that the pore ring residues differ among $Sec61{\alpha}$ subunit homologues and two hydrophobic residues in the TM7 contribute to the pore ring formation.

Keywords

References

  1. Osborne, A. R., Rapoport, T. A. and van den Berg, B. (2005) Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529-550. https://doi.org/10.1146/annurev.cellbio.21.012704.133214
  2. Becker, T., Bhushan, S., Jarasch, A., Armache, J. P., Funes, S., Jossinet, F., Gumbart, J., Mielke, T., Berninghausen, O., Schulten, K., Westhof, E., Gilmore, R., Mandon, E. C. and Beckmann, R. (2009) Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369-1373. https://doi.org/10.1126/science.1178535
  3. Mandon, E. C., Trueman, S. F. and Gilmore, R. (2009) Translocation of proteins through the Sec61 and SecYEG channels. Curr. Opin. Cell Biol. 21, 501-507. https://doi.org/10.1016/j.ceb.2009.04.010
  4. Zimmermann, R., Eyrisch, S., Ahmad, M. and Helms, V. (2011) Protein translocation across the ER membrane. Biochim. Biophys. Acta. 1808, 912-924. https://doi.org/10.1016/j.bbamem.2010.06.015
  5. Van den Berg, B., Clemons, W. M., Jr., Collinson, I., Modis, Y., Hartmann, E., Harrison, S. C. and Rapoport, T. A. (2004) X-ray structure of a protein-conducting channel. Nature 427, 36-44. https://doi.org/10.1038/nature02218
  6. Egea, P. F. and Stroud, R. M. (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc. Natl. Acad. Sci. U.S.A. 107, 17182-17187. https://doi.org/10.1073/pnas.1012556107
  7. Tsukazaki, T., Mori, H., Fukai, S., Ishitani, R., Mori, T., Dohmae, N., Perederina, A., Sugita, Y., Vassylyev, D. G., Ito, K. and Nureki, O. (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988-991. https://doi.org/10.1038/nature07421
  8. Cannon, K. S., Or, E., Clemons, W. M., Jr., Shibata, Y. and Rapoport, T. A. (2005) Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219-225. https://doi.org/10.1083/jcb.200412019
  9. Osborne, A. R. and Rapoport, T. A. (2007) Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97-110. https://doi.org/10.1016/j.cell.2007.02.036
  10. Menetret, J. F., Hegde, R. S., Heinrich, S. U., Chandramouli, P., Ludtke, S. J., Rapoport, T. A. and Akey, C. W. (2005) Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445-457. https://doi.org/10.1016/j.jmb.2005.02.053
  11. Broughton, J., Swennen, D., Wilkinson, B. M., Joyet, P., Gaillardin, C. and Stirling, C. J. (1997) Cloning of SEC61 homologues from Schizosaccharomyces pombe and Yarrowia lipolytica reveals the extent of functional conservation within this core component of the ER translocation machinery. J. Cell Sci. 110(Pt 21), 2715-2727.
  12. Johnson, A. E. and van Waes, M. A. (1999) The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799-842. https://doi.org/10.1146/annurev.cellbio.15.1.799
  13. Pilon, M., Schekman, R. and Romisch, K. (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540-4548. https://doi.org/10.1093/emboj/16.15.4540
  14. Zhou, M. and Schekman, R. (1999) The engagement of Sec61p in the ER dislocation process. Mol. Cell 4, 925-934. https://doi.org/10.1016/S1097-2765(00)80222-1
  15. Junne, T., Schwede, T., Goder, V. and Spiess, M. (2006) The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol. Biol. Cell 17, 4063-4068. https://doi.org/10.1091/mbc.E06-03-0200
  16. Goder, V., Junne, T. and Spiess, M. (2004) Sec61p contributes to signal sequence orientation according to the positive-inside rule. Mol. Biol. Cell 15, 1470-1478.
  17. Harris, C. R. and Silhavy, T. J. (1999) Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438-3444.
  18. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. and Rapoport, T. A. (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795-807. https://doi.org/10.1016/S0092-8674(00)81738-9
  19. Li, W., Schulman, S., Boyd, D., Erlandson, K., Beckwith, J. and Rapoport, T. A. (2007) The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell. 26, 511-521. https://doi.org/10.1016/j.molcel.2007.05.002
  20. Saparov, S. M., Erlandson, K., Cannon, K., Schaletzky, J., Schulman, S., Rapoport, T. A. and Pohl, P. (2007) Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 26, 501-509. https://doi.org/10.1016/j.molcel.2007.03.022
  21. Azad, A. K., Katsuhara, M., Sawa, Y., Ishikawa, T. and Shibata, H. (2008) Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation. Plant Cell Physiol. 49, 1196-1208. https://doi.org/10.1093/pcp/pcn095
  22. Azad, A. K., Sato, R., Ohtani, K., Sawa, Y., Ishikawa, T. and Shibata, H. (2011) Functional characterization and hyperosmotic regulation of aquaporin in Synechocystis sp. PCC 6803. Plant Sci. 180, 375-382. https://doi.org/10.1016/j.plantsci.2010.10.010
  23. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  24. Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK-a program to check the stereochemical quality of protein structure. J. Appl. Cryst. 26, 283-291. https://doi.org/10.1107/S0021889892009944
  25. Maiti, R., Van Domselaar, G. H., Zhang, H. and Wishart, D. S. (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32, 590-594. Web Server issue; DOI: 10.1093/nar/gkh477.

Cited by

  1. Variation in the ribosome interacting loop of the Sec61α from Giardia lamblia vol.10, pp.1, 2015, https://doi.org/10.1186/s13062-015-0087-0
  2. Effects of Dipeptidyl Peptidase-4 Inhibition with MK-0431 on Syngeneic Mouse Islet Transplantation vol.2014, 2014, https://doi.org/10.1155/2014/795283