DOI QR코드

DOI QR Code

Protective effects of a chalcone derivative against Aβ-induced oxidative stress and neuronal damage

  • Kim, Mi-Jeong (Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine) ;
  • Lee, Yoo-Hyun (Department of Food Science and Nutrition, The University of Suwon) ;
  • Kwak, Ji-Eun (Department of Food Science and Nutrition, The University of Suwon) ;
  • Na, Young-Hwa (College of Pharmacy, CHA University) ;
  • Yoon, Ho-Geun (Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine)
  • Received : 2011.08.23
  • Accepted : 2011.08.25
  • Published : 2011.11.30

Abstract

Amyloid ${\beta}$-peptide ($A{\beta}$-peptide)-induced oxidative stress is thought to be a critical component of the pathophysiology of Alzheimer's disease (AD). New chalcone derivatives, the Chana series, were recently synthesized from the retrochalcones of licorice. In this study, we investigated the protective effects of the Chana series against neurodegenerative changes in vitro and in vivo. Among the Chana series, Chana 30 showed the highest free radical scavenging activity (90.7%) in the 1,1-diphenyl-2- picrylhydrazyl assay. Chana 30 also protected against $A{\beta}$-induced neural cell injury in vitro. Furthermore, Chana 30 reduced the learning and memory deficits of $A{\beta}_{1-42}$-peptide injected mice. Taken together, these results suggest that Chana 30 may be a promising candidate as a potent therapeutic agent against neurodegenerative diseases.

Keywords

References

  1. Yankner, B., Dawes, L., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L. and Neve, R. L. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245, 417-420. https://doi.org/10.1126/science.2474201
  2. Zhu, X., Lee, H. G., Perry, G. and Smith, M. A. (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim. Biophys. Acta. 1772, 494-502. https://doi.org/10.1016/j.bbadis.2006.10.014
  3. Markesbery, W. R. (1997) Oxidative stress hypothesis in Alzheimer disease. Free Radic. Biol. Med. 23, 134-147. https://doi.org/10.1016/S0891-5849(96)00629-6
  4. Butterfield, D. A., Drake, J., Pocernich, C. and Castegna, A. (2001) Evidence of oxidative damage in Alzheimer's disease brain: central role of amyloid beta-peptide. Trens Mol. Med. 7, 548-554. https://doi.org/10.1016/S1471-4914(01)02173-6
  5. Butterfield, D. A. (2003) Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer's disease brain: mechanisms and consequences. Curr. Med. Chem. 10, 2651-2659. https://doi.org/10.2174/0929867033456422
  6. Butterfield, D. A., Galvan, V., Lange, M. B., Tang, H., Sowell, R. A., Spilman, P., Fombonne. J., Gorostiza, O., Zhang, J., Sultana, R. and Bredesen, D. E. (2010) In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic. Biol. Med. 48, 136-144. https://doi.org/10.1016/j.freeradbiomed.2009.10.035
  7. Boyd-Kimball, D., Sultana, R., Mohmmad-Abdul, H. and Butterfield, D. A. (2004) Rodent Abeta(1-42) exhibits oxidative stress properties similar to those of human Abeta (1-42): Implications for proposed mechanisms of toxicity. J. Alzheimers Dis. 6, 515-525. https://doi.org/10.3233/JAD-2004-6509
  8. Dumont, M., Lin, M. T. and Beal, M. F. (2010) Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer's disease. J. Alzheimers Dis. 20(Suppl 2), S633-643. https://doi.org/10.3233/JAD-2010-100507
  9. Dragicevic, N., Smith, A., Lin, X., Yuan, F., Copes, N., Delic, V., Tan, J., Cao, C., Shytle, R. D. and Bradshaw, P. C. (2011) Green Tea Epigallocatechin-3-Gallate (EGCG) and Other Flavonoids Reduce Alzheimer's Amyloid-Induced Mitochondrial Dysfunction. J. Alzheimers Dis. 1, 1-15.
  10. Avdulov, N. A., Chochina, S. V., Igbavboa, U., O'Hare, E. O., Schroeder, F., Cleary, J. P. and Wood, W. G. (1997) Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J. Neurochem. 68, 2086-2091.
  11. Butterfield, D. A. (1997) Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chem. Res. Toxicol. 10, 495-506. https://doi.org/10.1021/tx960130e
  12. Castellani, R., Hirai, K., Aliev, G., Drew, K. L., Nunomura, A., Takeda, A., Cash, A. D., Obrenovich, M. E., Perry, G. and Smith, M. A. (2002) Role of mitochondrial dysfunction in Alzheimer's disease. J. Neurosci. Res. 70, 357-360. https://doi.org/10.1002/jnr.10389
  13. Haraguchi, H., Ishikawa, H., Mizutani, K., Tamura, Y. and jinoshita, T. (1998) Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflate. Bioorg. Med. Chem. 6, 339-347. https://doi.org/10.1016/S0968-0896(97)10034-7
  14. Franceschelli, S., Pesce, M., Vinciguerra, I., Ferrone, A., Riccione, G., Antonia, P., Grilli, A., Felaco, M. and Speranza, L. (2011) Licocalchone-C extracted from Glycyrrhiza Glabra inhibits lipopolysaccharide-interferon-${\gamma}$ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules. 16, 5720-5734. https://doi.org/10.3390/molecules16075720
  15. Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K. and Kinoshita, T. (1998) Mode of antibacterial action of retrochalcones from Glycyrrhiza inflate. Phytochemistry 48, 124-129.
  16. Bak, E. J., Park, H. G., Lee, C. H., Lee, T. I., Woo, G. H., Na, Y. H. and Cha, J. H. (2011) Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4 and adipocyte differenciation in vitro. BMB Rep. 44, 410-414. https://doi.org/10.5483/BMBRep.2011.44.6.410
  17. Im, S. E., Yoon, H., Nam, T. G., Heo, H. J., Lee, C. Y. and Kim, D. O. (2010) Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cells. J. Med. Food 13, 779-784. https://doi.org/10.1089/jmf.2009.1204
  18. Heo, H. J. and Lee, C. Y. (2005) Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. J. Agric. Food Chem. 53, 1984-1989. https://doi.org/10.1021/jf048616l
  19. Xue, H. Y., Gao, G. Z., Lin, Q. Y., Jin, L. J. and Xu, Y. P. (2011) protective effects of aucubin on $H_2O_2$-induced apoptosis in PC12 cells. Phytother. Res. doi:10.1002/ptr.3562. [Epub ahead of print]
  20. Yan, J. J., Cho, J. Y., Kim, H. S., Kim, K. L., Jung, J. S., Huh, S. O., Suh, H. W., Kim, Y. H. and Song, D. K. (2001) Protection against ${\beta}$-amyloid peptide toxicity in vivo with long-term administration on ferulic acid. Br. J. Pharmacol. 133, 89-96. https://doi.org/10.1038/sj.bjp.0704047
  21. Fu, A. L., Dong, Z. H. and Sun, M. R. (2006) Protective effect of N-acetyl-L-cysteine of amyloid ${\beta}$-peptide-induced learning and memory deficits in mice. Brain Res. 1109, 201-206. https://doi.org/10.1016/j.brainres.2006.06.042
  22. Tatton, W. G. (1993) Selegiline can mediate neuronal rescue rather than neuronal protection. Movement Disorders 8(Suppl 1), s20-s30. https://doi.org/10.1002/mds.870080506
  23. Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  24. Shen, Z., Wangn, G. and Linn, S. Z. (1990) Two-way shuttle box avoidance conditioning and brain NADH in rats. Physiol. Behav. 48, 515-517. https://doi.org/10.1016/0031-9384(90)90292-C

Cited by

  1. Gelidiella acerosa protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an in vivo report vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2017.1302967
  2. Neuroprotective Properties of a Standardized Extract fromMyracrodruon urundeuvaFr. All. (Aroeira-Do-Sertão), as Evaluated by a Parkinson’s Disease Model in Rats vol.2014, 2014, https://doi.org/10.1155/2014/519615
  3. Studies on the interaction between vanillin and β-Amyloid protein via fluorescence spectroscopy and atomic force microscopy vol.32, pp.2, 2016, https://doi.org/10.1007/s40242-016-5347-8
  4. Protective effects of (1-(4-hydroxy-phenyl)-3-m-tolyl-propenone chalcone in indomethacin-induced gastric erosive damage in rats vol.10, pp.1, 2014, https://doi.org/10.1186/s12917-014-0303-7
  5. In Vitro Neuroprotective Activities of Compounds from Angelica shikokiana Makino vol.20, pp.3, 2015, https://doi.org/10.3390/molecules20034813
  6. Insulin protects against Aβ-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption vol.85, 2014, https://doi.org/10.1016/j.neuropharm.2014.01.036