DOI QR코드

DOI QR Code

Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides

  • Nan, Yong-Hai (Department of Bio-Materials, Graduate School, School of Medicine, Chosun University) ;
  • Shin, Song-Yub (Department of Bio-Materials, Graduate School, School of Medicine, Chosun University)
  • Received : 2011.07.06
  • Accepted : 2011.08.19
  • Published : 2011.11.30

Abstract

To investigate the effects of disulphide bond position on the salt resistance and lipopolysaccharide (LPS)-neutralizing activity of ${\alpha}$-helical homo-dimeric antimicrobial peptides (AMPs), we synthesized an ${\alpha}$-helical model peptide ($K_6L_4W_1$) and its homo-dimeric peptides (di-$K_6L_4W_1$-N, di-$K_6L_4W_1$-M, and di-$K_6L_4W_1$-C) with a disulphide bond at the N-terminus, the central position, and the C-terminus of the molecules, respectively. Unlike $K_6L_4W_1$ and di-$K_6L_4W_1$-M, the antimicrobial activity of di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C was unaffected by 150 mM NaCl. Both di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C caused much greater inhibitory effects on nitric oxide (NO) release in LPS-induced mouse macrophage RAW 264.7 cells, compared to di-$K_6L_4W_1$-M. Taken together, our results indicate that the presence of a disulphide bond at the N- or C-terminus of the molecule, rather than at the central position, is more effective when designing salt-resistant ${\alpha}$-helical homo-dimeric AMPs with potent antimicrobial and LPS-neutralizing activities.

Keywords

References

  1. Jang, W. S., Kim, K. N., Lee, Y. S., Nam, M. H. and Lee, I. H. (2002) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett. 521, 81-86. https://doi.org/10.1016/S0014-5793(02)02827-2
  2. Batista, C. V., Scaloni, A., Rigden, D. J., Silva, L. R., Rodrigues Romero. A., Dukor, R., Sebben, A., Talamo, F. and Bloch, C. (2001) A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett. 494, 85-89. https://doi.org/10.1016/S0014-5793(01)02324-9
  3. Lee, I. H., Lee, Y. S., Kim, C. H., Kim, C. R., Hong, T., Menzel, L., Boo, L. M., Pohl, J., Sherman, M. A., Waring, A. and Lehrer, R. I. (2001) Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. Biochim. Biophys. Acta. 1527, 141-148. https://doi.org/10.1016/S0304-4165(01)00156-8
  4. Nagaoka, I., Tsutsumi-Ishii, Y., Yomogida, S. and Yamashita, T. (1997) Isolation of cDNA encoding guinea pig neutrophil cationic antibacterial polypeptide of 11 kDa (CAP11) and evaluation of CAP11 mRNA expression during neutrophil maturation. J. Biol. Chem. 272, 22742-22750. https://doi.org/10.1074/jbc.272.36.22742
  5. Scocchi, M., Zelezetsky, I., Benincasa, M., Gennaro, R., Mazzoli, A. and Tossi, A. (2005) Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS J. 272, 4398-4406. https://doi.org/10.1111/j.1742-4658.2005.04852.x
  6. Goldman, M. J., Anderson, G. M., Stolzenberg, E. D., Kari, U. P., Zasloff, M. and Wilson, J. M. (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88, 553-560. https://doi.org/10.1016/S0092-8674(00)81895-4
  7. Wu, M., Maier, E., Benz, R. and Hancock, R. E. W. (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 7235-7242. https://doi.org/10.1021/bi9826299
  8. Lee, I. H., Cho, Y. and Lehrer, R. I. (1997) Effects of pH and salinity on the antimicrobial properties of clavanins. Infect. Immun. 65, 2898-2903.
  9. Tam, J. P., Lu, Y. A. and Yang, J. L. (2002) Correlations of cationic charges with salt sensitivity and microbial specificity of cystine-stabilized ${\beta}$-strand antimicrobial peptides. J. Biol. Chem. 277, 50450-50456. https://doi.org/10.1074/jbc.M208429200
  10. Friedrich, C., Scott, M. G., Karunaratne, N., Yan, H. and Hancock, R. E. W. (1999) Salt-resistant ${\alpha}$-helical cationic antimicrobial peptides. Antimicrob. Agents Chemother. 43, 1542-1548.
  11. Bowdish, D. M., Davidson, D. J., Scott, M. G. and Hancock, R. E. (2005) Immunomodulatory activity of small host defense peptides. Antimicrob. Agents Chemother. 49, 1727-1732. https://doi.org/10.1128/AAC.49.5.1727-1732.2005
  12. Rosenfeld, Y., Papo, N. and Shai, Y. (2006) Endotoxin (lipopolysaccharide) Neutralization by innate immunity host-defense peptides. J. Biol. Chem. 281, 1636-1643. https://doi.org/10.1074/jbc.M504327200
  13. Yomogida, S., Nagaoka, I. and Yamashita, T. (1996) Purification of the 11-and 5-kDa antibacterial polypeptides from guinea pig neutrophils. Arch. Biochem. Biophys. 328, 219-226. https://doi.org/10.1006/abbi.1996.0166
  14. Scocchi, M., Zelezetsky, I., Benincasa, M., Gennaro, R., Mazzoli, A. and Tossi, A. (2005) Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS J. 272, 4398-4406. https://doi.org/10.1111/j.1742-4658.2005.04852.x
  15. Dalla Serra, M., Cirioni, O., Vitale, R. M., Renzone, G., Coraiola, M., Giacometti, A., Potrich, C., Baroni, E., Guella, G., Sanseverino, M., De Luca, S., Scalise, G., Amodeo, P. and Scaloni, A. (2008) Structural features of distinctin affecting peptide biological and biochemical properties. Biochemistry 47, 7888-7899. https://doi.org/10.1021/bi800616k
  16. Jang, W. S., Kim, C. H., Kim, K. N., Park, S. Y., Lee, J. H., Son, S. M. and Lee, I. H. (2003) Biological activities of synthetic analogs of halocidin, an antimicrobial peptide from the tunicate Halocynthia aurantium. Antimicrob. Agents Chemother. 47, 2481-2486. https://doi.org/10.1128/AAC.47.8.2481-2486.2003
  17. Tencza, S. B., Creighton, D. J., Yuan, T., Vogel, H. J., Montelaro, R. C. and Mietzner, T. A. (1999) Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. J. Antimicrob. Chemother. 44, 33-41. https://doi.org/10.1093/jac/44.1.33
  18. Dempsey, C. E., Ueno, S. and Avison, M. B. (2003) Enhanced membrane permeabilization and antibacterial activity of a disulfide dimerized magainin analogue. Biochemistry 42, 402-409. https://doi.org/10.1021/bi026328h
  19. Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E., Vasil, M. L. and Hodges, R. S. (2005) Rational design of ${\alpha}$-helical antimicrobial peptides with enhanced activities and specificity/ therapeutic index. J. Biol. Chem. 280, 12316-12329. https://doi.org/10.1074/jbc.M413406200
  20. Fazio, M.A., Jouvensal, L., Vovelle, F., Bulet, P., Miranda, M. T., Daffre, S. and Miranda, A. (2007) Biological and structural characterization of new linear gomesin analogues with improved therapeutic indices. Biopolymers 88, 386-400. https://doi.org/10.1002/bip.20660
  21. Lee, J., Y., Yang, S. T., Lee, S. K., Jung, H. H., Shin, S. Y., Hahm, K. S. and Kim, J. I. (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J. 275, 3911-3920. https://doi.org/10.1111/j.1742-4658.2008.06536.x
  22. Martin, G. S., Mannino, D. M., Eaton, S. and Moss, M. (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546-1554. https://doi.org/10.1056/NEJMoa022139
  23. Lee J, Y., Yang, S. T., Kim, H. J., Lee, S. K., Jung, H. H., Shin, S. Y. and Kim, J. I. (2009) Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidinderived antibacterial peptide. BMB Rep. 42, 586-592. https://doi.org/10.5483/BMBRep.2009.42.9.586

Cited by

  1. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials vol.78, 2014, https://doi.org/10.1016/j.addr.2014.10.013
  2. Defense peptides: recent developments vol.6, pp.4, 2015, https://doi.org/10.1515/bmc-2015-0014
  3. Insect Antimicrobial Peptides, a Mini Review vol.10, pp.11, 2018, https://doi.org/10.3390/toxins10110461