DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Erigeron annuus L. Flower Extract through Heme Oxygenase-1 Induction in RAW264.7 Macrophages

RAW264.7 대식세포에서 Heme Oxygenase-1의 유도에 의한 개망초 (Erigeron annuus L.) 꽃 Methanol 추출물의 항염증 효과

  • Sung, Mi-Sun (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Kim, Young-Hwa (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Choi, Young-Min (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Ham, Hyeon-Mi (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Jun-Soo (Dept. of Food Science and Technology, Chungbuk National University)
  • Received : 2011.08.08
  • Accepted : 2011.09.30
  • Published : 2011.11.30

Abstract

This study investigated the anti-inflammatory effect of Erigeron annuus L. flower (EAF) methanol extract. We examined the involvement of heme oxygenase-1 (HO-1) in the inhibitory activities of EAF methanol extract on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Cell viability and NO assays were performed. In addition, inducible nitric oxide synthase (iNOS) and HO-1 expressions were detected by Western blotting and blocking HO-1 activity on NO production. EAF methanol extract (25, 50, 100, 200 ${\mu}g$/mL) significantly inhibited LPS-stimulated NO production (p<0.05; 12.82, 9.61, 6.83, 2.52 ${\mu}m$) in a concentration-dependent manner. EAF methanol extract also reduced the expression of iNOS protein. The EAF methanol extract induced the expression of HO-1 in a dose-dependent manner. Blockage of HO-1 activity by zinc protoporphyrin suppressed EAF methanol extract-induced reductions in the production of NO. The present results suggest that EAF methanol extract has a potent anti-inflammatory effect in RAW264.7 macrophages through the induction of HO-1.

본 연구에서는 LPS에 의해 활성화된 RAW264.7 대식세포에서의 NO 생성 및 iNOS와 HO-1 단백질 발현의 변화를 측정하여 개망초(Erigeron annuus L.) 꽃(EAF) methanol 추출물의 항염증 효과를 확인하였다. RAW264.7 대식세포에 LPS를 처리한 결과 NO의 함량이 11.48 ${\mu}m$ 수준으로 증가하였다. 그러나 EAF methanol 추출물(25, 50, 100, 200 ${\mu}g$/mL)을 처리하였을 때 NO의 함량이 12.82, 9.61, 6.83, 2.52 ${\mu}m$로 농도 의존적으로 감소하였다. 또한 EAF methanol 추출물은 NO의 생성에 관여하는 iNOS 단백질의 발현을 농도 의존적으로 저해하였으며 HO-1 단백질의 발현을 유도하였다. EAF methanol 추출물에 의한 HO-1 발현이 NO 생성에 미치는 영향에 대해 확인하기 위해 HO-1의 inhibitor인 ZnPP를 사용하였다. 실험결과 ZnPP를 처리하여 HO-1의 발현을 저해하였을 때 추출물에 의해 감소된 NO의 함량이 다시 증가되었다. 본 연구 결과, EAF methanol 추출물은 염증을 유발하는 중요 인자인 NO를 저해하였고, iNOS의 발현을 억제시켰으며 산화적 손상으로부터 세포 보호 방어 기작에 관여하는 HO-1의 발현 등 항염증에 우수한 효과를 보였으며 항염증 연구의 기초 자료로 활용될 것으로 예상된다.

Keywords

References

  1. Sarkar D, Fisher PB. 2006. Molecular mechanisms of aging-associated inflammation. Cancer Lett 236: 13-23. https://doi.org/10.1016/j.canlet.2005.04.009
  2. Fierro IM, Serhan CN. 2001. Mechanisms in anti-inflammation and resolution: the role of lipoxins and aspirin-triggered lipoxins. Braz J Med Biol Res 34: 555-566. https://doi.org/10.1590/S0100-879X2001000500002
  3. Yun HJ, Hoe SK. 2008. Anti-inflammatory effect of Injinhotang in RAW 264.7 cells. Korean J Herbol 23: 169-178.
  4. Higuchi M, Higashi N, Taki H, Osawa T. 1990. Cytolytic mechanism of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanism act as synergistically as the major cytolytic mechanism of activated macrophages. J Immunol 144: 1425-1431.
  5. Jaffrey SR, Snyder SH. 1995. Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol 11: 417-440. https://doi.org/10.1146/annurev.cb.11.110195.002221
  6. Choi YJ, Jo WS, Kim HJ, Nam BH, Kang EY, Oh SJ, Lee GA, Jeong MH. 2010. Anti-inflammatory effect of Chlorella ellipsoidea extracted from seawater by organic solvents. Korean J Fish Aquat Sci 43: 39-45. https://doi.org/10.5657/kfas.2010.43.1.039
  7. Lowenstein CJ, Alley EW, Raval P, Snowman AM, Synder SH, Russell SW, Murphy WJ. 1993. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA 90: 9730-9734. https://doi.org/10.1073/pnas.90.20.9730
  8. Maines MD. 1997. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37: 517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
  9. Lee TS, Chau LY. 2002. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Natl Med 8: 240-246. https://doi.org/10.1038/nm0302-240
  10. Otterbein LE, Chai AM. 2000. Heme oxygenase: colors of defense against cellular stress. Am J Physiol 279: 1029-1037.
  11. Oh GS, Pae HO, Chung HT. 2003. Nitric oxide priming protects nitric oxide-mediated apoptosis via heme oxygenase-1 induction. Free Radical Biol Med 34: 1136-1145. https://doi.org/10.1016/S0891-5849(03)00064-9
  12. Yoo NH, Jang DS, Yoo JL, Lee YM, Cho JH, Kim JS. 2008. Erigeron flavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. J Nat Prod 71: 713-715. https://doi.org/10.1021/np070489a
  13. Bae IK, Min HY, Han AR, Seo EK, Lee SK. 2005. Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur J Pharmacol 513: 237-242. https://doi.org/10.1016/j.ejphar.2005.03.011
  14. Kim JH, Kim DH, Beak SH, Lee HJ, Kim MR, Kwon HJ, Lee CH. 2006. Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by downregulation of NF-${\kappa}B$ and p38 MAP kinase activity in LPSstimulated RAW 264.7 cells. Biochem Pharmacol 71: 1198-1205. https://doi.org/10.1016/j.bcp.2005.12.031
  15. Jeoung YJ, Choi SY, An CS, Jeon YH, Park DK, Lim BO. 2009. Comparative effect on anti-inflammatory activity of the Phellinus lintesus and Phellinus linteus grown in germinated brown rice extracts in murine macrophage RAW264.7 cells. Korean J Med Crop Sci 17: 97-101.
  16. Weisz A, Cicatiello I, Esumi H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferonnn-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginene. Biochem J 316: 209-215. https://doi.org/10.1042/bj3160209
  17. Lee MH, Lee JM, Jun SH, Lee SH, Kim NW, Lee JH, Ko NY, Mun SH, Kim BK, Lim BO, Choi DK, Choi WS. 2007. The anti-inflammatory effects of Pyrolae herva extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J Ethnopharmacol 112: 49-54. https://doi.org/10.1016/j.jep.2007.01.036
  18. Jang MH, Shin MC, Kim YJ, Kim CJ, Kim Y, Kim EH. 2004. Atractylodes japonica suppresses lipopolysaccharide-stimulated expressions of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophages. Biol Pharm Bull 27: 324-327. https://doi.org/10.1248/bpb.27.324
  19. Zhao F, Wang L, Liu K. 2009. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L. through inhibition on iNOS pathway. J Ethnopharmacol 122: 457-462. https://doi.org/10.1016/j.jep.2009.01.038
  20. Hung YC, Guh JH, Cheng ZJ, Chang YL, Hwang TL, Liao CH, Tzeng CC, Teng CM. 2001. Inhibition of the expression of inducible nitric oxide synthase and cyclooxygenase-2 in macrophages by 7HQ derivatives: involvement of IkappaBalpha stabilization. Eur J Pharmacol 418: 133-139. https://doi.org/10.1016/S0014-2999(01)00922-0
  21. Park SC, Son DY. 2011. Inhibitory effects of Euphorbia supina Rafin on the production of pro-inflammatory mediator by LPS-stimulated RAW264.7 macrophages. J Korean Soc Food Sci Nutr 40: 486-492. https://doi.org/10.3746/jkfn.2011.40.4.486
  22. Han J, Kim Y, Sung J, Um Y, Lee Y, Lee J. 2009. Suppressive effects of Chrysanthemum zaxadskii var. latilobum flower extracts on nitric oxide production and inducible nitric oxide synthase expression. J Korean Soc Food Sci Nutr 38: 1685-1690. https://doi.org/10.3746/jkfn.2009.38.12.1685
  23. Takahashi T, Moriga K, Akagi R, Sassa S. 2004. Heme oxygenase-1: a novel therapeutic target in oxidative tissue injuries. Curr Med Chem 11: 1545-1561. https://doi.org/10.2174/0929867043365080
  24. Ryter SW, Otterbein LE, Morse D, Choi AM. 2002. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 234-235: 249-263. https://doi.org/10.1023/A:1015957026924
  25. Nakao A, Otterbein LE, Overhaus M, Sarady JK, Tsung A, Kimixuka K, Nalesnik MA, Kaizu T, Uchiyama T, Liu F, Murase N, Bauer AJ, Bach FH. 2004. Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology 127: 595-606. https://doi.org/10.1053/j.gastro.2004.05.059
  26. Kim Y, Sung J, Sung M, Choi Y, Jeong HS, Lee J. 2010. Involvement of heme oxygenase-1 in the anti-inflammatory activity of Chrysanthemum boreale Makino extracts on the expression of inducible nitric oxide synthase in RAW264.7 macrophages. J Ethnopharmacol 131: 550-554. https://doi.org/10.1016/j.jep.2010.07.030
  27. Hwangbo C, Lee HS, Park J, Choe J, Lee JH. 2009. The anti-inflammatory effect of tussilagone, from Tussilago farfara, is mediated by the induction of heme oxygenase-1 in murine macrophages. Int Immunopharmacol 9: 1578-1584. https://doi.org/10.1016/j.intimp.2009.09.016
  28. Yoon WJ, Moon JY, Song G, Lee YK, Han MS, Lee JS, Ihm BS, Lee WJ, Lee NH, Hyun CG. 2010. Artemisia fukudo essential oil attenuate LPS-induced inflammation by suppressing NF-${\kappa}B$ and MAPK activation in TAW 264.7 macrophages. Food Chem Toxicol 48: 1222-1229. https://doi.org/10.1016/j.fct.2010.02.014
  29. Srisook K, Palachot M, Mongkol N, Srisook E. 2011. Antiinflammatory effect of ethyl acetate extract from Cissus quadrangularis Linn may be involved with induction of heme oxygenae-1 and suppression of NF-${\kappa}B$ activation. J Ethnopharmacol 133: 1008-1014. https://doi.org/10.1016/j.jep.2010.11.029

Cited by

  1. Roots ofErigeron annuusAttenuate Acute Inflammation as Mediated with the Inhibition of NF-κB-Associated Nitric Oxide and Prostaglandin E2production vol.2013, 2013, https://doi.org/10.1155/2013/297427
  2. Protective effects of quality certified traditional Doenjang in Korea on TNF-α-induced vascular inflammation in human umbilical vein endothelial cells vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.378
  3. Effect of the Erigeron annuus In Vitro Antioxidant Properties and Extract on Serum Lipid in Mice vol.28, pp.3, 2015, https://doi.org/10.9799/ksfan.2015.28.3.387
  4. Anti-Inflammatory Effects of Extracts from Caesalpinia sappan L. on Skin Inflammation vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.384
  5. Anti-Inflammatory Effects of Extracts from Ligustrum ovalifolium H. Leaves on RAW264.7 Macrophages vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1205
  6. Inhibitory Activity of Sargassum hemiphyllum Ethanol Extract on Inflammatory Response in LPS-induced RAW 264.7 Cells and Mouse Model vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.319
  7. 개망초꽃 에센셜 오일의 항산화, 항균 및 항염 활성 vol.33, pp.4, 2011, https://doi.org/10.12925/jkocs.2016.33.4.717
  8. LPS가 처리된 RAW 264.7 대식세포에서 Nrf2/HO-1 경로 조절을 통한 매실 추출물의 NO 생성 억제 효과 vol.25, pp.1, 2011, https://doi.org/10.14374/hfs.2017.25.1.1
  9. 가지-청열소독음(淸熱消毒飮)의 항산화 및 항염 효능에 관한 연구 vol.43, pp.2, 2017, https://doi.org/10.15230/scsk.2017.43.2.125
  10. Anti-inflammatory Effect of Distylium racemosum leaf Biorenovate Extract in LPS-stimulated RAW 264.7 Macrophages Cells vol.64, pp.4, 2021, https://doi.org/10.3839/jabc.2021.051