DOI QR코드

DOI QR Code

Extraction of Liberated Reducing Sugars from Rapeseed Cake via Acid and Alkali Treatments

산 및 알칼리 처리에 의한 유채박의 유리당 추출

  • Jeong, Han-Seob (Dept. of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Ho-Yong (Dept. of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Ahn, Sye-Hee (Division of Life & Environmental Resources, Daegu University) ;
  • Oh, Sei-Chang (Division of Life & Environmental Resources, Daegu University) ;
  • Yang, In (School of Forest Resources, Chungbuk National University) ;
  • Choi, In-Gyu (Dept. of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 정한섭 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김호용 (서울대학교 농업생명과학대학 산림과학부) ;
  • 안세희 (대구대학교 생명환경대학 산림자원학과) ;
  • 오세창 (대구대학교 생명환경대학 산림자원학과) ;
  • 양인 (충북대학교 농업생명환경대학 목재종이학과) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2011.07.28
  • Accepted : 2011.10.11
  • Published : 2011.11.30

Abstract

Rapeseed cake, which is the organic waste remaining after rapeseed oil production, is readily available and considered an ecologically-friendly resource with very low cost and high dietary fiber content. This research was carried out for two reasons. First, it was done to analyze the liberated reducing sugar content of rapeseed cake. Second, it was done to investigate the effects on the sugar yield of the various concentrations of acidic and alkaline catalysts used for the hydrolysis of rapeseed cake and the concentrations of rapeseed cake in each catalyst. Several amounts of ground rapeseed cake, 0.5 g, 1 g, and 2 g, were put into 100 mL of catalysts such as sulfuric acid (0.5~2%), hydrochloric acid (0.5~2%), and sodium hydroxide (0.5~2%). Then they were hydrolyzed for 5 min at 121$^{\circ}C$. After hydrolysis, HPLC equipped with an RI detector was used to analyze liberated reducing sugars such as sucrose, glucose, galactose, fructose, and arabinose separated from rapeseed cake. The degradation rate of rapeseed cake was the highest in hydrochloric acid. As the catalyst concentrations used for hydrolysis of rapeseed cake increased, the degradation rate of rapeseed cake also significantly increased. Total reducing sugar content was the highest in hydrochloric acid, and it increased with the increase of catalyst concentrations. However, as the amount of rapeseed cake increased, the total reducing sugar content decreased, exceptionally sucrose in the case of sodium hydroxide.

본 연구에서는 유채박 섬유질을 고부가가치로 활용하기에 앞서 적합한 화학적 전처리 조건을 찾고자, 산 및 알칼리 촉매로 다양한 조건 하에 처리한 후, 각 인자들에 따른 유채박의 분해율 및 유리당 함량을 측정하였다. 유채박은 $H_2SO_4$, HCl, NaOH 촉매 중 HCl 촉매 하에서 가장 효과적으로 분해되었으며, 특히 1%의 촉매 농도에서 높은 분해율을 보였다. 반면 $H_2SO_4$, HCl 촉매 하에서 유채박 투입량이 낮을수록 분해율이 증가하였으나, NaOH 촉매 하에서는 유채박 투입량에 따른 분해율 차이가 거의 관찰되지 않았다. 분해 후 측정된 총 유리당 함량은 HCl를 처리한 경우가 가장 높았으며, 유채박 투입량이 증가함에 따라 총 유리당 함량이 감소하였으나 이에 따른 영향은 미미했다. 또한 2% 촉매에서 총 유리당 함량이 높았으나 HCl 촉매의 경우 1%일 때가 다른 처리 조건들보다 총 유리당 함량이 높았다. 각각의 유리당으로는 $H_2SO_4$, HCl 촉매 하에서 glucose, galactose, arabinose, fructose가 주로 분리되었으며 NaOH 촉매 하에서는 대부분 sucrose가 분리되었다. 촉매 농도가 증가함에 따라 glucose, galactose 함량은 증가하였고, fructose 함량은 감소하였으며, 거의 모든 유리당에서 유채박 투입량이 증가함에 따라 그 함량이 감소하였다. 상기 결과를 종합해 보면 총 유리당은 유채박을 1% HCl를 사용하여 2 g/100 mL의 비율로 화학적 처리하는 것이 본 연구 범위 내에서 총 당을 분리해내는데 가장 우수한 것으로 조사되었으며 glucose, galactose는 2% HCl-0.5 g/100 mL, fructose는 0.5% $H_2SO_4$-0.5 g/100 mL 조건에서 효율적인 분리가 이루어짐을 확인하였다. 따라서 목표하는 당에 따라 적합한 촉매, 촉매 농도, 시료 투입량을 조절하여 분리해낼 수 있을 것으로 생각한다. 현재 분리되어 나온 당을 바탕으로 기능성 당 및 수용성 식이섬유를 얻는 연구를 수행하고 있으며, 실질적으로 대량의 당들을 순도 높게 얻기 위해서는 처리 규모(시료양, 촉매)를 늘리거나 각각의 당들을 효과적으로 정제하는 연구도 필요할 것으로 생각한다.

Keywords

References

  1. Westbrook CK, Naik CV, Herbinet O, Pitz WJ, Mehl M, Sarathy SM, Curran HJ. 2011. Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combust Flame 158: 742-755. https://doi.org/10.1016/j.combustflame.2010.10.020
  2. Saka S, Kusdiana D. 2001. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80: 225-231. https://doi.org/10.1016/S0016-2361(00)00083-1
  3. Rashid U, Anwar F. 2008. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87: 265-273. https://doi.org/10.1016/j.fuel.2007.05.003
  4. Zabaniotou A, Ioannidou O, Skoulou V. 2008. Rapeseed residues utilization for energy and 2nd generation biofuels. Fuel 87: 1492-1502. https://doi.org/10.1016/j.fuel.2007.09.003
  5. Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A. 2007. Oil cakes and their biotechnological applications-a review. Bioresour Technol 98: 2000-2009. https://doi.org/10.1016/j.biortech.2006.08.002
  6. Roger FG, Frank CR. 1980. Rapeseed meal and its use in poultry diets. A review. Anim Feed Sci Tech 5: 255-298. https://doi.org/10.1016/0377-8401(80)90016-4
  7. Wang R, Shaarani SM, Godoy LC, Melikoglu M, Vergara CS , Koutinas A, Webb C. 2010. Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enzyme Microb Technol 47: 77-83. https://doi.org/10.1016/j.enzmictec.2010.05.005
  8. Subuh AMH, Rowan TG, Lawrence TLJ. 1996. Effect of heat or formaldehyde treatment on the rumen degradability and intestinal tract apparent digestibility of protein in soyabean meal and in rapeseed meals of different glucosinolate content. Anim Feed Sci Tech 57: 257-265. https://doi.org/10.1016/0377-8401(95)00857-8
  9. Danielsen V, Eggum BO, Krogh JS, Sørensen H. 1994. Dehulled protein-rich rapeseed meal as a protein source for early weaned piglets. Anim Feed Sci Tech 46: 239-250. https://doi.org/10.1016/0377-8401(94)90142-2
  10. Yoshie-Stark Y, Wada Y, Wasche A. 2008. Chemical composition, functional properties, and bioactivities of rapeseed protein isolates. Food Chem 107: 32-39. https://doi.org/10.1016/j.foodchem.2007.07.061
  11. Yoshie-Stark Y, Wada Y, Schott M, Wäsche A. 2006. Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates. LWT-Food Science and Technology 39: 503-512. https://doi.org/10.1016/j.lwt.2005.03.006
  12. Berot S, Compoint JP, Larré C, Malabat C, Gueguen J. 2005. Large scale purification of rapeseed proteins (Brassica napus L.). J Chromatogr B 818: 35-42. https://doi.org/10.1016/j.jchromb.2004.08.001
  13. Naczk M, Amarowicz R, Sullivan A, Shahidi F. 1998. Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem 62: 489-502. https://doi.org/10.1016/S0308-8146(97)00198-2
  14. Yang I, Han GS, Choi IG, Kim YH, Ahn SH, Oh SC. 2011. Development of adhesive resins formulated rapeseed flour hydrolyzates for laminated veneer lumber and its performances evaluation. J Wood Sci 39: 221-229.
  15. Yang I, Jeong JH, Han GS, Choi IG, Sagong M, Ahn SH, Oh SC. 2010. Development of adhesive resins formulated with rapeseed flour akali hydrolyzates for plywood panels. Journal of Wood Science 38: 323-332.
  16. Ozcimen D, Karaosmanolu F. 2004. Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy 29: 779-787. https://doi.org/10.1016/j.renene.2003.09.006
  17. Ucar S, Ozkan AR. 2008. Characterization of products from the pyrolysis of rapeseed oil cake. Bioresource Technol 99: 8771-8776. https://doi.org/10.1016/j.biortech.2008.04.040
  18. Egues I, González Alriols M, Herseczki Z, Marton G, Labidi J. 2010. Hemicelluloses obtaining from rapeseed cake residue generated in the biodiesel production process. Ind Eng Chem 16: 293-298. https://doi.org/10.1016/j.jiec.2010.01.036
  19. Kim HJ, Hur JK, Huh CS, Baek YJ. 2001. Effects of extractants on the characteristic of soluble dietary fiber from apple pomace. Korean J Food Sci Technol 33: 161-165.
  20. Kim YK, Lee MG, Lee SR. 1997. Elimination of fenitrothion residues during dietary fiber and bioflavonoid preparations from mandarin orange peels. Korean J Food Sci Technol 29: 223-229.
  21. Chantaro P, Devahastin S, Chiewchan N. 2008. Production of antioxidant high dietary fiber powder from carrot peels. LWT-Food Sci Technol 41: 1987-1994. https://doi.org/10.1016/j.lwt.2007.11.013
  22. Ajila CM, Aalami M, Leelavathi K, Prasada Rao UJS. 2010. Mango peel powder: a potential source of antioxidant and dietary fiber in macaroni preparations. Innov Food Sci Emerg 11: 219-224. https://doi.org/10.1016/j.ifset.2009.10.004
  23. Ubando-Rivera J, Navarro-Ocana A, Valdivia-Lopez MA. 2005. Mexican lime peel: comparative study on contents of dietary fibre and associated antioxidant activity. Food Chem 89: 57-61. https://doi.org/10.1016/j.foodchem.2004.01.076
  24. Park CH, Kim HJ, Moon TW. 1997. Preparation and physicochemical properties of soluble dietary fiber extracts from soymilk residue at high temperature. Korean J Food Sci Technol 29: 648-656.
  25. Sowbhagya HB, Florence SP, Mahadevamma S, Tharanathan RN. 2007. Spent residue from cumin-a potential source of dietary fiber. Food Chem 104: 1220-1225. https://doi.org/10.1016/j.foodchem.2007.01.066
  26. Raghavendra SN, Ramachandra SSR, Rastogi NK, Raghavarao KSMS, Kumar S, Tharanathan RN. 2006. Grinding characteristics and hydration properties of coconut residue: a source of dietary fiber. J Food Eng 72: 281-286. https://doi.org/10.1016/j.jfoodeng.2004.12.008
  27. Al-Farsi MA, Lee CY. 2008. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 108: 977-985. https://doi.org/10.1016/j.foodchem.2007.12.009
  28. Horwitz W, Latimer GW. 2006. Official method of analysis of AOAC International. 18th ed. AOAC International, Gaithersburg, MD, USA. p 1-57.
  29. Wang Z, Keshwani DR, Redding AP, Cheng JJ. 2010. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technol 101: 3583-3585. https://doi.org/10.1016/j.biortech.2009.12.097
  30. Chen K, Zhang H, Miao Y, Wei P, Chen J. 2011. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes. Enzyme Microb Technol 48: 339-344. https://doi.org/10.1016/j.enzmictec.2010.12.009

Cited by

  1. Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues vol.27, pp.1, 2014, https://doi.org/10.7732/kjpr.2014.27.1.060
  2. Identification and Determination of Phenolic Compounds in Rapeseed Meals (Brassica napus L.) vol.04, pp.01, 2015, https://doi.org/10.4236/jacen.2015.41002