DOI QR코드

DOI QR Code

SOME INVARIANT SUBSPACES FOR SUBSCALAR OPERATORS

  • Yoo, Jong-Kwang (Department of Liberal Arts and Science Chodang University)
  • Received : 2009.12.16
  • Published : 2011.11.30

Abstract

In this note, we prove that every subscalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent subscala operator is nilpotent. We also prove that every subscalar operator with property (${\delta}$) on a Banach space of dimension greater than 1 has a nontrivial invariant closed linear subspace.

Keywords

References

  1. E. Albrecht, On decomposable operators, Integral Equations Operator Theory 2 (1979), no. 1, 1-10. https://doi.org/10.1007/BF01729357
  2. E. Albrecht and J. Eschmeier, Analytic functional models and local spectral theory, Proc. London Math. Soc. (3) 75 (1997), no. 2, 323-348. https://doi.org/10.1112/S0024611597000373
  3. E. Albrecht, J. Eschmeier, and M. M. Neumann, Some topics in the theory of decomposable operators, In: Advances in invariant subspaces and other results of Operator Theory: Advances and Applications, 17, Birkhauser Verlag, Basel, 1986.
  4. C. Benhida and E. H. Zerouali, Local spectral theory of linear operators RS and SR, Integral Equations Operator Theory 54 (2006), no. 1, 1-8. https://doi.org/10.1007/s00020-005-1375-3
  5. E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 375-397.
  6. S. W. Brown, Some invariant subspaces for subnormal operators, Integral Equations Operator Theory 1 (1978), no. 3, 310-333. https://doi.org/10.1007/BF01682842
  7. S. W. Brown, Hyponormal operators with thick spectra have invariant subspaces, Ann. Math. 125 (1987), no. 1, 93-103. https://doi.org/10.2307/1971289
  8. K. Clancey, Seminormal Operators, Lecture Notes in Math. 742, Springer-Verlag, New York, 1979.
  9. I. Colojoarva and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  10. D. Drissi, Local spectrum and Kaplansky's theorem on algebraic operators, Colloq. Math. 75 (1998), no. 2, 159-165. https://doi.org/10.4064/cm-75-2-159-165
  11. I. Erdelyi and W. S. Wang, On strongly decomposable operators, Pacific J. Math. 110 (1984), no. 2, 287-296. https://doi.org/10.2140/pjm.1984.110.287
  12. J. Eschmeier and B. Prunaru, Invariant subspaces for operators with Bishop's property ($\beta$) and thick spectrum, J. Funct. Anal. 94 (1990), no. 1, 196-222. https://doi.org/10.1016/0022-1236(90)90034-I
  13. E. Ko, k-quasihyponormal operators are subscalar, Integral Equations Operator Theory 28 (1997), no. 4, 492-499. https://doi.org/10.1007/BF01309158
  14. R. Lange, A purely analytic criterion for a decomposable operator, Glasgow Math. J. 21 (1980), no. 1, 69-70. https://doi.org/10.1017/S0017089500003992
  15. K. B. Laursen, Algebraic spectral subspaces and automatic continuity, Czechoslovak Math. J. 38(113) (1988), no. 1, 157-172.
  16. K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. https://doi.org/10.2140/pjm.1992.152.323
  17. K. B. Laursen and M. M. Neumann, Decomposable operators and automatic continuity, J. Operator Theory 15 (1986), no. 1, 33-51.
  18. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press Oxford Science Publications, Oxford, 2000.
  19. K. B. Laursen and P. Vrbova, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math. J. 39(114) (1989), no. 4, 730-739.
  20. M. Mbekhta, Generalisation de la decomposition de Kato aux operateurs paranormaux at spectraux, Glasgow Math. J. 29 (1987), no. 2, 159-175. https://doi.org/10.1017/S0017089500006807
  21. M. Mbekhta, Sur la theorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1991), no. 3, 621-631.
  22. T. L. Miller and V. G. Miller, An operator satisfying Dunford's condition (C) but without Bishop's property ($\beta$), Glasgow Math. J. 40 (1998), no. 3, 427-430. https://doi.org/10.1017/S0017089500032754
  23. T. L. Miller and V. G. Miller, and M. M. Neumann, Spectral subspaces of subscalar and related operators, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1483-1493. https://doi.org/10.1090/S0002-9939-03-07217-4
  24. V. Ptak and P. Vrbova, On the spectral function of a normal operator, Czechoslovak Math. J. 23(98) (1973), 615-616. https://doi.org/10.1007/BF01593911
  25. M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), no. 2, 385-395.
  26. C. J. Read, Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2) 56 (1997), no. 3, 595-606. https://doi.org/10.1112/S0024610797005486
  27. S. L. Sun, The single-valued extension property and spectral manifolds, Proc. Amer. Math. Soc. 118 (1993), no. 1, 77-87. https://doi.org/10.1090/S0002-9939-1993-1156474-0
  28. F.-H. Vasilescu, Analytic functional calculus and spectral decompositions, Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982.
  29. P. Vrbova, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23(98) (1973), 483-492.
  30. P. Vrbova, Structure of maximal spectral spaces of generalized scalar operators, Czechoslovak Math. J. 23(98) (1973), 493-496.
  31. J.-K. Yoo, Local spectral theory for operators on Banach spaces, Far East J. Math. Soc. (2001), Special Vol. Part III, 303-311.