DOI QR코드

DOI QR Code

Inkjet Printing Technology Still in Progress

플렉서블 전자 소자용 잉크젯 프린팅 기술

  • Lee, Mi-Jung (Advanced Materials Engineering Department, Kookmin University)
  • 이미정 (국민대학교 신소재공학부)
  • Received : 2011.10.19
  • Accepted : 2011.11.01
  • Published : 2011.11.30

Abstract

The inkjet printing technology has undergone remarkable development since the concept of printed electronics was first introduced. The large interest which it has sparkled is due to its many enticing features such as processing simplicity, low cost and scalability as well as its compatibility with flexible electronics. Thanks to constant improvements, inkjet printing has nowadays become a mature technology which is an effective replacement for a number of intricate and expensive conventional laboratory tools and is also on the verge of gaining industrial significance. Technological challenges which still remain open include low temperature processing, high density integration and reproducibility. This paper reviews some recent advances in the inkjet printing technology, addressing those issues. And we also discuss a number of novel approaches to performing inkjet printing.

Keywords

References

  1. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-Resolution Inkjet Printing of All-Polymer Transistor Circuits," Science, 290 2123-26 (2000). https://doi.org/10.1126/science.290.5499.2123
  2. C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic Thin Film Transistors for Large area Electronics," Adv. Mater., 14 [2] 99-117 (2002). https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  3. B.,-J. de Gans, and U. S. Schubert, "Inkjet Printing of Polymer Micro-Arrays and Libraries: Instrumentation, Requirements, and Perspectives," Macromolecular Rapid Commun., 24 [11] 659-66 (2003). https://doi.org/10.1002/marc.200350010
  4. F. C. Krebs, "Fabrication and processing of polymer solar cells: A Review of Printing and Coating Techniques," Solar Energy Mater. Solar Cells, 93 [4] 394-412 (2009). https://doi.org/10.1016/j.solmat.2008.10.004
  5. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, "Inkjet Printing-Process and Its Applications," Adv. Mater., 22 673-85 (2009).
  6. C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, "High Photovoltaic Performance of Inkjet Printed Polymer: Fullerene Blends," Adv. Mater., 19 3973-78 (2007). https://doi.org/10.1002/adma.200700911
  7. T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, "Polymer bAsed Organic Solar Cells using Inkjet Printed Active Layers," Appl. Phys. Lett., 92 033306-8 (2008). https://doi.org/10.1063/1.2833185
  8. B. A. Ridley, B. Nivi, and J. M. Jacobson, "All-Inorganic Field Effect Transistors Fabricated by Printing," Science, 286 [5440] 746-49 (1999). https://doi.org/10.1126/science.286.5440.746
  9. Y.-S. Park, S. Chung, S.-J. Kim, S.-H. Lyu, J.-W. Jang, S.-K. Kwon, Y. Hong, and J.-S. Lee, "High-performance Organic Charge Trap Flash Memory Devices Based on Ink-jet Printed 6,13-bis(triisopropylsilylethynyl) Pentacene Transistors," Appl. Phys. Lett., 96 213107-9 (2010) https://doi.org/10.1063/1.3435470
  10. B.-J. deGans, P. C. Duineveld, and U. S. Schubert, "Inkjet Printing of Polymers: State of the Art and Future Developments," Adv. Mater., 16 [3] 203-13 (2004). https://doi.org/10.1002/adma.200300385
  11. C. W. Tang and S. A. Van Slyke, "Organic Electroluminescent Diodes," Appl. Phys. Lett., 51 913-5 (1987). https://doi.org/10.1063/1.98799
  12. J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, "Ightemitting Diodes Based on Conjugated Polymers," Nature, 347 539-41 (1990). https://doi.org/10.1038/347539a0
  13. G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. Van Rens, and D. M. de Leeuw, "Flexible Active-matrix Displays and Shift Registers Based on Solution-processed Organic Transistors," Nature Mater., 3 106-10 (2004). https://doi.org/10.1038/nmat1061
  14. W. Clemens, "Polymer Electronics," Technology Guide, 2 84-7 (2009).
  15. C. W. Sele, T. vonWerne, R. H. Friend, and H. Sirringhaus, "Lithography-Free, Self-Aligned Inkjet Printing with Sub-Hundred-Nanometer Resolution," Adv. mater., 17 [8] 997-1001 (2005). https://doi.org/10.1002/adma.200401285
  16. Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, "Down-scaling of Self-aligned, All-printed Polymer Thin-film Transistors," Nature Nanotech., 2 784-89 (2007). https://doi.org/10.1038/nnano.2007.365
  17. T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, and T. Someya, "Organic Transistors Manufactured using Inkjet Technology with Subfemtoliter Accuracy," Proceedings of the National Academy of Sciences, 105 [13] 4976-80 (2008). https://doi.org/10.1073/pnas.0708340105
  18. M. Caironi, E. Gili, T. Sakanoue, X. Cheng, and H. Sirringhaus, "High Yield, Single Droplet Electrode Arrays for Nanoscale Printed Electronics," ACS Nano, 4 [3] 1451-56 (2010). https://doi.org/10.1021/nn9014664
  19. P. J. Yunker, T. Still1, M, A. Lohr, and A. G. Yodh, "Suppression of the Coffee-ring Effect by Shape-dependent Capillary Interactions," Nature, 476 308-11 (2011). https://doi.org/10.1038/nature10344
  20. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, "A High-mobility Electrontransporting Polymer for Printed Transistors," Nature, 457 679-86 (2009). https://doi.org/10.1038/nature07727
  21. J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, and A. Salleo, "Large Modulation of Carrier Transport by Grain-boundary Molecular Packing and Microstructure in Organic Thin Films," Nature Mater., 8 952-58 (2009). https://doi.org/10.1038/nmat2570
  22. H.-C. Song, S. Nham, B.-S. Lee, Y. Choi, and B.-H. Ryu, "The Effect of Particle Size on Rheological Properties of Highly Concentrated Ag Nanosol," J. Kor. Ceram. Soc., 46 [1] 41-6 (2009). https://doi.org/10.4191/KCERS.2009.46.1.041
  23. K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, and H. Sirringhaus, "Low-temperature, High-performance Solution-processed Metal Oxide Thinfilm Transistors Formed by a 'Sol-gel on Chip' Process," Nature Mater., 10 45-51 (2011). https://doi.org/10.1038/nmat2914
  24. M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, "Low-temperature Fabrication of High-performance Metal Oxide Thin-film Electronics via Combustion Processing," Nature Mater., 10 [5] 382-88 (2011). https://doi.org/10.1038/nmat3011
  25. B.,-Y. Kim, D.,-B. Han, and C.-W. Jeong, "Preparation of Screen Printable Conductive $MoSi_2$ Thick Films for Ceramic Sheet Heater," J. Kor. Ceram. Soc., 47 ,[4], 319-24 (2010). https://doi.org/10.4191/KCERS.2010.47.4.319
  26. D. H. Yeon, E. Y. Lee, K. G. Kim, N. G. Park, and Y. S. Cho, "Zinc Borosilicate Thick Films as a Ag-Protective Layer for Dye-Sensitized Solar Cells," J. Kor. Ceram. Soc., 46 [3] 313-16 (2009). https://doi.org/10.4191/KCERS.2009.46.3.313
  27. M. Kanungo, H. Lu, G. G. Malliaras, and G. B. Blanchet, "Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions," Science, 323 234-37 (2009). https://doi.org/10.1126/science.1166087
  28. T. Someya, "Printed Electronics: Nanotube Inks Make Their Mark," Nature Nanotech., 4 143-144 (2009). https://doi.org/10.1038/nnano.2009.32
  29. B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S.,-I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, "Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes," Science, 323 1590-93 (2009). https://doi.org/10.1126/science.1168375
  30. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, "Patterning Organic Single-crystal Transistor Arrays," Nature, 444 913-17 (2006). https://doi.org/10.1038/nature05427
  31. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, "Very High-mobility Organic Single-crystal Transistors with Incrystal Conduction Channel," Appl. Phys. Lett., 90 102120-2 (2007). https://doi.org/10.1063/1.2711393
  32. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, "Inkjet Printing of Single-crystal Films," Nature, 475 364-67 (2011). https://doi.org/10.1038/nature10313

Cited by

  1. Solvent Vapor Annealing Effects in Contact Resistances of Zone-cast Benzothienobenzothiophene (C8-BTBT) Transistors vol.53, pp.4, 2016, https://doi.org/10.4191/kcers.2016.53.4.411
  2. Property Analysis of Multi-Material Specimen based on ME Type 3D Printer vol.37, pp.3, 2020, https://doi.org/10.7736/jkspe.019.122