DOI QR코드

DOI QR Code

Thermal Shock Behavior of Porous Nozzles with Various Pore Sizes for Continuous Casting Process

  • Kim, Ju-Young (School of Materials Science & Engineering, Pusan National University) ;
  • Yoon, Sang-Hyeon (School of Materials Science & Engineering, Pusan National University) ;
  • Kim, Yoon-Ho (Engine Development Department Platform Development Division Technical Center, Daihatsu Motor Co., Ltd.) ;
  • Lee, Hee-Soo (School of Materials Science & Engineering, Pusan National University)
  • Received : 2011.10.04
  • Accepted : 2011.11.18
  • Published : 2011.11.30

Abstract

Thermal shock behavior of porous ceramic nozzles with various pore sizes for continuous casting process of steel was investigated in terms of physical properties and microstucture. Porous nozzle samples with a composition of $Al_2O_3$-$SiO_2$-$ZrO_2$ were fabricatedby adding various sizes of graphite as the pore forming agent. As the graphite size increased from 45~75 to 150~180 ${\mu}m$, both the resulting pore size and the flexural strength also increased. A thermal shock test was carried out at temperatures (${\Delta}$T) of 600, 700, 800, and 900$^{\circ}C$. Microstructure analysis revealed a small number of cracks on the sample with the largest mean pore size of 22.32 ${\mu}m$. In addition, increasing the pore size led to a smaller decrease in both pressure drop and elastic modulus. In conclusion, controlling the pore size can enhance thermal shock behavior.

Keywords

References

  1. G. J. Zhang, J. F. Yang, and Tatsuki Ohji, "Fabrication of Porous Ceramics with Unidirectionally Aligned Continuous Pores," J. Am. Ceram. Soc., 84 [6] 1395-7 (2001).
  2. F. Tang, H. Fudouzi, T. Uchikoshi, and Y. Sakka, "Preparation of Porous Materials with Controlled Pore Size and Porosity," J. Eur. Ceram. Soc., 24 341-4 (2004). https://doi.org/10.1016/S0955-2219(03)00223-1
  3. K. Maca, P. Dobsak, and A.R. Boccaccini, "Fabrication of Graded Porous Ceramics using Alumina-carbon Powder Mixtures," Ceram. Int., 27 577-84 (2001). https://doi.org/10.1016/S0272-8842(01)00004-9
  4. O. Lyckfeldt and J. M. K. Ferreira, "Processing of Porous Ceramics by 'Starch Consolidation'," J. Eur. Ceram. Soc., 18 131-40 (1998). https://doi.org/10.1016/S0955-2219(97)00101-5
  5. C. Yuan, L. J. Vandeperre, R. J. Stearn, and W. J. Clegg, "The Effect of Porosity in Thermal Shock," J. Mater. Sci., 43 4099-106 (2008). https://doi.org/10.1007/s10853-007-2238-x
  6. M. Collin and D. Rowcliffe, "Analysis and Prediction of Thermal Shock in Brittle Materials," Acta Mater., 48 1655-65 (2000). https://doi.org/10.1016/S1359-6454(00)00011-2
  7. N. M. Rendtorff, L. B. Garrido, and E. F. Aglietti, "Effect of the Addition of Mullite-zirconia to the Thermal Shock Behavior of Zircon Materials," Mater. Sci. Eng. A., 498 208-15 (2008). https://doi.org/10.1016/j.msea.2008.08.036
  8. T. Volkov-Husovic, R. M. Jancic, M. Cvetkovic, D. Mitrakovic, and Z. Popovic, "Thermal Shock Behavior of Alumina-Based Refractories: Fracture Resistance Parameters and Water Quench Test," Mater. Lett., 38 372-8 (1999). https://doi.org/10.1016/S0167-577X(98)00192-X
  9. J. H. She, J. F. Yang, and T. Ohji, "Thermal Shock Resistance of Porous Silicon Nitride Ceramics," J. Mater. Sci. Lett., 22 331-3 (2003). https://doi.org/10.1023/A:1022678606160
  10. D. P. H. Hasselman, "Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics," J. Am. Ceram. Soc., 52 [11] 600-4 (1969). https://doi.org/10.1111/j.1151-2916.1969.tb15848.x
  11. D. P. H. Hasselman and J. P. Singh, "Analysis of Thermal Stress Resistance of Microcracked Brittle Ceramics," Am. Ceram. Soc. Bull., 58 856-60 (1979).
  12. S. H. Yoon, M. K. Cho, D. H. Jeong, and H. S. Lee, "Effect of Porosity on Durability in a Porous Nozzle for Continuous Casting (in Korean)," Kor. J. Met. Mater., 48 [7] 625-9 (2010).
  13. Y. H. Cho, J. Y. Kim, S. H. Yoon, and H. S. Lee, "Effect of the Pore Size of Graphite on the Mechanical Properties and Permeability of a Porous Nozzle for Continuous Casting Process," Kor. J. Met. Mater., 49 [7] 530-4 (2011). https://doi.org/10.3365/KJMM.2011.49.7.530
  14. Z. Wang, C. Hong, X. Zhang, X. Sun, and J. Han, "Microstructure and Thermal Shock Behavior of $ZrB_{2}-SiC$-graphite Composite," Mater. Chem. Phys., 113 338-41 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.095
  15. N. Rendtorff, L. Garrido, and E. Aglietti, "Mullite-zirconiazircon Composites: Properties and Thermal Shock Resistance," Ceram. Int., 35 779-86 (2009). https://doi.org/10.1016/j.ceramint.2008.02.015
  16. J. T. Richardson, Y. Peng, and D. Remue, "Properties of Ceramic Foam Catalyst Supports: Pressure Drop," Appl. Catal., A, 204, 19-32 (2000). https://doi.org/10.1016/S0926-860X(00)00508-1
  17. K. Ishizaki, S. Komarneni, and M. Nanko, Porous Materials, pp. 202-24, Kluwer Academic Publishers, Netherlands, 1998.
  18. L. Shen, M. Liu, X. Liu, and B. Li, "Thermal Shock Resistance of the Porous $Al_{2}O_{3}/ZrO_{2}$ Ceramics Prepared by Gelcasting," Mater. Res. Bull., 42 2048-56 (2007). https://doi.org/10.1016/j.materresbull.2007.02.001
  19. R. W. Rice, "Comparison of Stress Concentration Versus Minimum Solid area Based Mechanical Property-porosity Relation," J. Mater. Sci., 28 2187-90 (1993). https://doi.org/10.1007/BF00367582

Cited by

  1. Thermal shock behaviour of paper-derived alumina ceramics vol.44, pp.12, 2013, https://doi.org/10.1002/mawe.201300131