DOI QR코드

DOI QR Code

Formation of Nb2O5 Microcone Structure in NaF Electrolyte by Anodization

NaF 전해질 양극산화에 의한 마이크로콘 구조 니오븀 산화물 제조

  • Jeong, Bong-Yong (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Eun-Hye (Department of Chemical Engineering, Inha University)
  • 정봉용 (한국세라믹기술원 미래융합세라믹본부) ;
  • 정은혜 (인하대학교 화학공학과)
  • Received : 2011.10.10
  • Accepted : 2011.10.17
  • Published : 2011.11.30

Abstract

In this study, we show that by anodization of Nb in NaF electrolytes microcone niobium oxide layers can be formed under a range of experimental conditions. It is found that a single NaF electrolyte leads to the formation of microcones. At 1 M NaF, 40 V, 1 h, well-ordered microcones were generated on Nb discs. XRD results show that the initially formed anodic oxide is amorphous, but an amorphous to crystalline transition occurs during anodization. For the formation of favorable microcones, it is considered that proper parameters such as electrolyte concentration, voltage, anodizing time are necessary according to the kind of electrolytes.

Keywords

References

  1. H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, "Self-Organized Porous $WO_{3}$ Formed in NaF Electrolytes," Electrochem. Commun., 7 [3] 295-98 (2005). https://doi.org/10.1016/j.elecom.2005.01.003
  2. A. Ghicov, H. Tsuchiya, J. M. Macak, and P. Schmuki, "Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes," Electrochem. Commun., 7 [5] 49-52 (2005). https://doi.org/10.1016/j.elecom.2004.11.004
  3. H. Tsuchiya and P. Schmuki, "Self-Organized High Aspect Ratio Porous Hafnium Oxide Prepared by Electrochemical Anodization," Electrochem. Commun., 7 [1] 49-52 (2005). https://doi.org/10.1016/j.elecom.2004.11.004
  4. I. Sieber, H. Hildeber, A. Friedrich, and P. Schmuki, "Formation of Self-Organized Niobium Porous Oxide on Niobium," Electrochem. Commun., 7 [1] 97-100 (2005). https://doi.org/10.1016/j.elecom.2004.11.012
  5. H. Tsuchiya, J. M. Macak, I. Sieber, and P. Schmuki, "Self-Organized High-Aspect-Ratio Nanoporous Zirconium Oxides Prepared by Electrochemical Anodization," Small, 1 [7] 722-25 (2005). https://doi.org/10.1002/smll.200400163
  6. H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, 268 [5216] 1466-68 (1995). https://doi.org/10.1126/science.268.5216.1466
  7. H. Masuda, F. Hasegawa, and S. Ono, "Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution," J. Electrochem. Soc., 144 [5] L127-30 (1997). https://doi.org/10.1149/1.1837634
  8. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, "Highly Ordered Nanochannel-Array Architecture in Anodic Alumina," Appl. Phys. Lett., 71 [19] 2770-72 (1997). https://doi.org/10.1063/1.120128
  9. O. Jessensky, F. Mller, and U. Gsele, "Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina," Appl. Phys. Lett., 72 [10] 1173-75 (1998). https://doi.org/10.1063/1.121004
  10. A. P. Li, F. Mller, A. Birner, K. Nielsch, and U. Gsele, "Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina," J. Appl. Phys., 84 [11] 6023-26 (1998). https://doi.org/10.1063/1.368911
  11. H. Masuda, K. Yada, and A. Osaka, "Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution," Jpn. J. Appl. Phys., 37 [11A] L1340-42 (1998). https://doi.org/10.1143/JJAP.37.L1340
  12. N. F. Jackson and J. C. Hendy, "The Use of Niobium as an Anode Material in Liquid Filled Electrolytic Capacitors," Electrocomp. Sci. Tech., 1 27-37 (1974). https://doi.org/10.1155/APEC.1.27
  13. T. Miyazaki, H. M. Kim, T. Kokubo, K. Hirofumi, and T. Nakamura, "Induction and Acceleration of Bonelike Apatite Formation on Tantalum Oxide Gel in Simulated Body Fluid," J. Sol-Gel Sci. Tech., 21 [1-2] 83-8 (2001). https://doi.org/10.1023/A:1011265701447
  14. R. L. Karlinsey, "Preparation of Self-Organized Niobium Oxide Microstructures via Potentiostatic Anodization," Electrochem. Commun., 7 [12] 1190-94 (2005). https://doi.org/10.1016/j.elecom.2005.08.027
  15. J. Choi, J. H. Lim, S. C. Lee, J. H. Chang, K. J. Kim, and M. A. Cho, "Porous Niobium Oxide Films Prepared by Anodization in $HF/H_3PO_4$," Electrochim. Acta, 51 [25] 5502-507 (2006). https://doi.org/10.1016/j.electacta.2006.02.024
  16. H. Habazaki, Y. Oikawa, K. Fushimi, Y. Aoki, K. Shimizu, P. Skeldon, and G.E. Thompson, "Importance of Water Content in Formation of Porous Anodic Niobium Oxide Films in Hot Phosphate-Glycerol Electrolyte," Electrochim. Acta, 54 [3] 946-51 (2009). https://doi.org/10.1016/j.electacta.2008.08.031
  17. J. P. S. Pringle, "The Anodic Oxidation of Superimposed Metallic Layers: Theory," Electrochim. Acta, 25 [11] 1423-437 (1980). https://doi.org/10.1016/0013-4686(80)87157-X
  18. K. Shimizu, K. Kobayashi, G. E. Thompson, and G. C. Wood, "A Novel Marker for the Determination of Transport Numbers During Anodic Barrier Oxide Growth on Aluminium," Physica B: Condensed Matter., 64 [3] 345-53 (1991)
  19. Robert L. Karlinsey, "Self-Assembled $Nb_2O_5$ Microcones with Tailored Crystallinity," J. Mater. Sci., 41 [15] 5017-20 (2006). https://doi.org/10.1007/s10853-006-0135-3
  20. Y. Oikawa, T. Minami, H. Mayama, K. Tsujii, K. Fushimi, Y. Aoki, P. Skeldon, G. E. Thompson, and H. Habazaki, "Preparation of Self-Organized Porous Anodic Niobium Oxide Microcones and Their Surface Wettability," Acta Mater., 57 [13] 3941-46 (2009). https://doi.org/10.1016/j.actamat.2009.04.050
  21. S. Yang, Y. Aoki, and H. Hanazaki, "Effect of Electrolyte Temperature on the Formation of Self-Organized Anodic Niobium Oxide Microcones in Hot Phosphate-Glycerol Electrolyte," Appl. Surf. Sci., 257 [19] 8190-195 (2011). https://doi.org/10.1016/j.apsusc.2011.01.041
  22. D. A. Vermilyea, "The Crystallization of Anodic Tantalum Oxide Films in the Presence of a Strong Electric Field," J. Electrochem. Soc., 102 [5] 207-14 (1955). https://doi.org/10.1149/1.2430031
  23. D. M. Lakhiani and L. L. Shreir "Crystallization of Amorphous Niobium Oxide During Anodic Oxidation," Nature, 188 49-50 (1960). https://doi.org/10.1038/188049a0
  24. H. Hanazaki, T. Ogasawara, H. Konno, K. Shimizu, S. Nagata, P. Skeldon, and G. E. Thompson, "Field Crystallization of Anodic Niobia," Corros. Sci., 49 [2] 580-93 (2007). https://doi.org/10.1016/j.corsci.2006.06.005
  25. K. Nagahara, M. Sakairi, H. Takahashi, K. Matsumoto, K. Takayama, and Y. Oda, "Mechanism of Formation and Growth of Sunflower-Shaped Imperfections in Anodic Oxide Films on Niobium," Electrochim. Acta, 52 [5] 2134-45 (2004).