DOI QR코드

DOI QR Code

Lithium Electroactivity of Cobalt Oxide Nanoparticles Synthesized Using Thermolysis Process

열분해 공정을 통해 합성된 산화 코발트 나노입자의 리튬 전기화학반응성

  • Jin, Yun-Ho (Department of Materials Science and Engineering, Ajou University) ;
  • Shim, Hyun-Woo (Department of Materials Science and Engineering, Ajou University) ;
  • Kim, Dong-Wan (Department of Materials Science and Engineering, Ajou University)
  • 진연호 (아주대학교 재료공학과) ;
  • 심현우 (아주대학교 재료공학과) ;
  • 김동완 (아주대학교 재료공학과)
  • Received : 2011.09.10
  • Accepted : 2011.09.22
  • Published : 2011.11.30

Abstract

Nano-sized cobalt (II) oxide nanoparticles with a high crystallinity were synthesized using thermolysis of a $Co^{2+}$-oleate precursor at 310$^{\circ}C$. The phase and morphology of as-prepared cobalt oxide nanoparticles were characterized using X-ray diffraction, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller surface area measurements. The cobalt oxide nanoparticles were found to be spherical nanoclusters with an average diameter of approximately 200 nm, consisting of tiny nanocrystals (10-20 nm). Furthermore, the Li electroactivites of the cobalt oxide nanoparticles were investigated using cyclic voltammetry and galvanostatic cycling. The cobalt oxide nanoparticles could deliver high capacities over 420 mA h $g^{-1}$ at a C/5 current rate.

Keywords

References

  1. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, "Nano-sized Transition-metal Oxides as Negativeelectrode Materials for Lithium-ion Batteries," Nature, 407 [28] 496-99 (2000). https://doi.org/10.1038/35035045
  2. C. H. Chen, B. J. Hwang, J. S. Do, J. H. Weng, M. Venkateswarlu, M. Y. Cheng , R. Santhanam, K. Ragavendran, J. F. Lee, J. M. Chen, and D. G. Liu, "An Understanding of Anomalous Capacity of Nano-sized CoO Anode Materials for Advanced Li-ion Battery," Eletrochem. Commun., 12 496-98 (2010). https://doi.org/10.1016/j.elecom.2010.01.031
  3. Y. Ye, F. Yuan, and S. Li, "Synthesis of CoO Nanoparticles by Esterification Reaction Under Solverthermal Conditions," Mater. Lett., 60 3175-78 (2006). https://doi.org/10.1016/j.matlet.2006.02.062
  4. N. A. M. Barakat, M. S. Khil, F. A. Sheikh, and H. Y. Kim, "Synthesis and Optical Properties of Two Cobalt Oxides (CoO and $Co_3O_4$) Nanofibers Produced by Electrospinning Process," J. Phys. Chem. C, 112 12225-233 (2008). https://doi.org/10.1021/jp8027353
  5. K. An, N. Lee, J. Park, S. C. Kim, Y. Hwang, J. G. Park, J. Y. Kim, J. H. Park, M. J. Han, J. Yu, and T. Hyeon, "Synthesis, Characterization, and Self-assembly of Pencil-shaped CoO Nanorods," J. Am. Chem. Soc., 128 9753-60 (2006). https://doi.org/10.1021/ja0608702
  6. J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, "Ultra-large-scale Syntheses of Monodisperse Nanocrystals," Nature Mater., 3 891-95 (2004). https://doi.org/10.1038/nmat1251
  7. N. Bao, L. Shen, W. An, P. Padhan, C. H. Turner, and A. Gupta, "Formation Mechanism and Shape Control of Monodisperse Magnetic $CoFe_2O_4$ Nanocrystals," Chem. Mater., 21 3458-68 (2009). https://doi.org/10.1021/cm901033m
  8. J. S. Do and C. H. Weng, "Electrochemical and Charge/discharge Properties of the Synthesized Cobalt Oxide as Anode Material in Li-ion Batteries," J. Power Sources, 159 323-27 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.054
  9. G. X. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H. K. Liu, and S. X. Dou, "Investigation of Cobalt Oxides as Anode Materials for Li-ion Batteries," J. Power Sources, 109 142-47 (2002). https://doi.org/10.1016/S0378-7753(02)00052-6
  10. G. H. Lee, J. G. Park, Y. M. Sung, K. Y. Chung, W. I. Cho, and D. W. Kim, "Enhanced Cycling Performance of an $Fe^{0}/Fe_{3}O_{4}$ Nanocomposite Electrode for Lithium-ion Batteries," Nanotechnology, 20 295205-209 (2009). https://doi.org/10.1088/0957-4484/20/29/295205

Cited by

  1. Sonochemical Synthesis and Photocatalytic Characterization of ZnO Nanoparticles vol.60, pp.1, 2016, https://doi.org/10.5012/jkcs.2016.60.1.34