DOI QR코드

DOI QR Code

Free Vibrations of Timoshenko Beam with Elastomeric Bearings at Two Far Ends

양단이 탄성받침으로 지지된 Timoshenko 보의 자유진동

  • 이병구 (원광대학교 토목환경공학과) ;
  • 이태은 (원광대학교 토목환경공학과) ;
  • 박창은 (원광대학교 대학원 토목환경공학과)
  • Received : 2010.12.29
  • Accepted : 2011.03.16
  • Published : 2011.06.30

Abstract

This paper deals with free vibrations of the Timoshenko beam supported by two elastomeric bearings at two far ends. The ordinary differential equation governing free vibrations of such beam is derived, in which both effects of rotatory inertia and shear deformation are included as the Timoshenko beam theory. Also, boundary conditions of the free end are derived based on the Timoshenko beam theory. The ordinary differential equation is solved by the numerical methods for calculating natural frequencies and mode shapes. Both effects of the rotatory inertia and shear deformation on natural frequencies are extensively discussed. Also, relationships between natural frequencies and slenderness ratio, foundation modulus and bearing length are presented. Typical mode shapes of bending moment and shear force as well as deflection are given in figures which show the positions of maximum amplitudes and nodal points.

이 연구는 양단이 탄성받침으로 지지된 Timoshenko 보의 자유진동에 관한 연구이다. 회전관성과 전단변형을 동시에 고려하는 Timoshenko 보 이론을 적용하여 탄성받침 보의 자유진동을 지배하는 상미분방정식과 자유단의 경계조건을 유도하였다. 이 상미분방정식을 수치해석하여 고유진동수와 진동형상을 산출하였다. 회전관성과 전단변형이 자유진동에 미치는 영향을 분석하고, 변수연구를 통하여 세장비, 지반계수, 탄성받침 길이 등이 자유진동에 미치는 영향을 그림에 나타내었다. 변위 및 휨 모멘트, 전단력의 진동형상을 그림에 나타내어 최대진폭 및 무변위의 위치를 알 수 있도록 하였다.

Keywords

References

  1. 이병구, 오상진, 박창은, 이태은(2011) 일정 표면적 변단면 보의 자유진동. 한국소음진동공학회논문집, 한국소음진동공학회, 제21권 제1호, pp. 66-73.
  2. Alonso, R.L. and Riberio, P. (2008) Flexural and torsional non-linear free vibrations of beams using a p-version finite element. Computer & Structures, Vol. 86, Issues 11-12, pp. 1189-1197. https://doi.org/10.1016/j.compstruc.2007.11.008
  3. Attarnejad, R., Semnani, S.J., and Shahba A. (2010) Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams. Finite Elements in Analysis and Design, Vol. 46, Issue 10, pp. 916-929. https://doi.org/10.1016/j.finel.2010.06.005
  4. Banerjee, J.R. (2003) Free vibration of sandwich beams using dynamic stiffness method. Computer & Structures Vol. 81, Issues 18-19, pp. 1915-1922. https://doi.org/10.1016/S0045-7949(03)00211-6
  5. Calim, F.F. (2009) Free and forced vibrations of nonuniform composit beams. Composit Structures, Vol. 88, Issue 3, pp. 413-423. https://doi.org/10.1016/j.compstruct.2008.05.001
  6. Carnahan, B., Luther, H.A., and Wilkes, J.O. (1969) Applied numerical methods. John Wiley and Sons, USA.
  7. Chen, W.Q., Lu, C.F., and Bian Z.G. (2004) A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, Vol. 28, Issue 10, pp. 877-890. https://doi.org/10.1016/j.apm.2004.04.001
  8. Chopra, A.K. (2001) Dynamics of structures. Prentice-Hall, USA.
  9. Foda, M.A. (1999) Influence of shear deformation and rotatory inertia on nonlinear free vibration of beam with pinned ends. Computer & Structures, Issue 6, pp. 663-670.
  10. Ganesan R. and Zabihollah, A. (2007) Vibration analysis of tapered composite beams using higher-order finite element. Part I: Formulation. Composit Structures, Vol. 77, Issue 3, pp. 306-318. https://doi.org/10.1016/j.compstruct.2005.07.018
  11. Humar, J.L. (1990) Dynamics of structures. Prentice-Hall, USA.
  12. Khalili, S.M.R., Jafari, A.A., and Eftekhari, S.A. (2010) A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Composit Structures, Vol. 92, Issue 10, pp. 2497-2511. https://doi.org/10.1016/j.compstruct.2010.02.012
  13. Kisa, M. and Gurel, M.A. (2007) Free vibration analysis of uniform and stepped cracked beams with circular cross section. International Journal of Engineering Science, Vol. 45, Issues 2-8, pp. 364-380. https://doi.org/10.1016/j.ijengsci.2007.03.014
  14. Lee, B.K., Jeong, J.S., Li, G.F., and Jin, T.K. (1999) Free vibrations of tapered piles embedded partially in Winkler type foundations. KSCE Journal of Civil Engineering, Vol. 3, No. 2, pp. 195-203. https://doi.org/10.1007/BF02829059
  15. Lee, B.K., Oh, S.J., and Lee, T.E. (2002) Novel methods for calculating natural frequencies and buckling loads of columns with intermediate multiple elastic springs. International Journal of Structural Stability and Dynamics, Vol. 2, No. 4, pp. 559-571. https://doi.org/10.1142/S0219455402000695
  16. Morfidis, K. (2010) Vibration of timoshenko beams on three-parameter elastic foundation. Computer & Structures, Vol. 88, Issues 5-6, pp. 294-308. https://doi.org/10.1016/j.compstruc.2009.11.001
  17. Paz, M. (1997) Structural dynamics. Kluver Academic Publishers, Netherlands.
  18. Salmon, C.G. and Johnson, J.E. (1996) Steel structures. Harper Collins College Publisher, USA.
  19. Timoshenko, S.P., Young, D.H., and Weaver, W. (1974) Vibration problems in engineering. Wiley & Sons, Inc., USA.
  20. Yang, J., Chen, Y., Xiang, Y., and Jia, X.L. (2008) Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, Vol. 312, Issues 1-2, pp. 166-181. https://doi.org/10.1016/j.jsv.2007.10.034