DOI QR코드

DOI QR Code

Longitudinal Vibration Mechanism of Grouted PSC Tendon

부착식 PSC 텐던의 종진동 메카니즘

  • Received : 2011.02.15
  • Accepted : 2011.03.17
  • Published : 2011.06.30

Abstract

This study reveals the longitudinal vibration mechanism of tendon embedded in a prestressed concrete. The extensional and torsional displacements of the strand are coupled, and the applied prestress level of tendon affects not only axial rigidity but also torsional rigidity. Measuring the elastic wave velocity of tendon, the applied prestress level of tendon could be evaluated. This is because the elastic wave velocity is a function of extensional and torsional rigidity. Using the experimental results for the six prsteressed concrete beams with different prestress levels, the longitudinal vibration mechanism and the effect of prestress level have been examined. To estimate the system ridigities of tendon, a system identification algorithm has been newly developed. The estimated system rigidities have been compared with the available results of related previous study.

본 연구는 부착식 PSC 텐던에 도입된 긴장응력이 종진동 거동에 미치는 메커니즘을 규명한다. 텐던의 종방향 직선변형과 비틀림변형은 상호 연동하여 거동하고, 텐던에 도입된 긴장응력은 축강성과 비틀림강성에 영향을 미친다. 그러므로 텐던의 탄성파 속도를 계측함으로써 텐던에 도입된 긴장응력을 추정 할 수 있다. 이는 텐던의 탄성파속도가 축강성과 비틀림강성의 함수이기 때문에 가능하다. 도입 긴장력이 다른 6개의 PSC 보 시험체에 대한 종진동 실험결과를 이용하여 텐던의 종진동 특성과 도입 긴장응력 사이의 역학적 메커니즘이 검증되었다. 이를 위하여, 탄성파 속도로부터 텐던의 시스템 강성을 추정할 수 있는 시스템인식 이론이 적용 되었다. 추정 결과는 기존 문헌의 연구결과와 비교 검토되었다.

Keywords

References

  1. 김병화, 장정범, 이홍표(2010) 종진동 특성을 이용한 부착식 텐던의 긴장력 추정 연구, 대한토목학회논문집, 대한토목학회, 제30권 제2A호, pp. 103-111.
  2. 김정태, 박재형(2005) PSC 보의 동적 모드정보를 통한 긴장력 감소 식별, 한국전산구조공학회지, 한국전산구조공학회, 제18권, 제3호, pp. 39-45.
  3. 장정범, 이홍표, 황경민, 송영철(2010) 부착식 텐던의 유효 긴장력 평가를 위한 최적의 매개변수 결정에 관한 연구, 대한토목학회논문집, 대한토목학회, 제30권 제2A호, pp. 161-168.
  4. 성택룡 등(2009) 정착부를 포함한 긴장재의 비파괴 안전진단기술 개발 및 실용화. 건설기술혁신사업 최종연구보고서, 과제번호 1615000067, 포항산업과학연구원.
  5. Beard, M.D., Lowe, M.J.S., and Cawley, P. (2003) Ultrasonic guided waves for inspection of grouted tendons and bolts, Journal of Materials in Civil Engineering, ASCE, Vol. 15, No. 3, pp. 212-218. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(212)
  6. Chaki, S. and Bourse G. (2009) Stress level measurement in prestressed steel strands using acoustoelastic effect, Experimental Mechanics, Vol. 49, pp. 673-681. https://doi.org/10.1007/s11340-008-9174-9
  7. Chen, H.L. and Wissawapaisal, K. (2001) Measurement of tensile forces in a seven-wire prestressing strand using stress waves, Journal of Engineering Mechanics, ASCE, Vol. 127, No. 6, pp. 599-606. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(599)
  8. Chen, H.L. and Wissawapaisal, K. (2002) Application of wigner-Villw Transform to evaluate tensile forces in seven-wire prestressing strands, Journal of Engineering Mechanics, ASCE, Vol. 128, No. 11, pp. 1206-1214. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1206)
  9. Ghoreishi, S.R., Messager, T., Cartraud, P., and Davies, P. (2007) Validity and limitations of linear analytical models for steel wire strands under axial loading using a 3D FE model, International Journal of Mechanical Sciences, Vol. 49, pp. 1251-1261. https://doi.org/10.1016/j.ijmecsci.2007.03.014
  10. Jiang, W., Wang, T.L., and Jones, W.K. (1991) Forced vibration of coupled extensional-torsional systems, Journal of Engineering Mechanics, Vol. 117, No. 5, pp. 1171-1190. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1171)
  11. Kim, B.H. and Park, T. (2007) Estimation of cable tension force using the frequency-based system identification method, Journal of Sound and Vibration, Vol. 304, pp. 660-676. https://doi.org/10.1016/j.jsv.2007.03.012
  12. Law, S.S. and Lu, Z.R. (2005) Time domain responses of a prestressed beam and prestress identification, Journal of Sound and Vibration, Vol. 228, pp. 1011-1025.
  13. Lu, Z.R. and Law, S.S. (2006) Identification of prestress force from measured structural responses, Mechanical System and Signal Processing, Vol. 20, pp. 2186-2199. https://doi.org/10.1016/j.ymssp.2005.09.001
  14. Machida S. and Durelli A.J. (1973) Response of a strand to axial and tosional displacements, Journal of Mechanical Engineering Science, Vol. 15, pp. 241-251. https://doi.org/10.1243/JMES_JOUR_1973_015_045_02
  15. Mottershead, J.E. and Friswell, M.I. (1993) Model updating in structural dynamics: a survey, Journal of Sound and Vibration, Vol. 167, No. 2, pp. 347-375. https://doi.org/10.1006/jsvi.1993.1340
  16. Randow, C.L. and Gazonas, G.A.(2009) Transient stress wave propagation in one-dimensional micropolar bodies, International Journal of Solids and Structures, Vol. 46, pp. 1218-1228. https://doi.org/10.1016/j.ijsolstr.2008.10.024
  17. Rao, S.S. (1996) Engineering Optimization: Theory and Practice, 3rd Ed. A Wiley-Interscience Publication, New York, NY.
  18. Raoof, M., Huang, Y.P., and Pithia, D. (1994) Response of axially preloaded spiral strands to impact loading, Computers & Structures, Vol. 51, No. 2, pp. 125-135. https://doi.org/10.1016/0045-7949(94)90043-4
  19. Raoof, M. and Kraincanic, I. (1995) Simple derivation of the stiffness matrix for axial/torsional coupling of sprial strands, Computers & Structures, Vol. 55, No. 4, pp. 589-600. https://doi.org/10.1016/0045-7949(94)00502-T
  20. Rizzo, P. (2006) Ultrasonic wave propagation in progressively loaded multi-wire strands, Experimental Mechanics, Vol. 46, 297-306. https://doi.org/10.1007/s11340-006-7248-0
  21. Saiidi, M., Douglas, B., and Feng, S. (1994) Prestress force effect on vibration frequency of concrete bridges, Journal of Structural Engineering, ASCE, Vol. 120, No. 7, pp. 2233-2241. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2233)
  22. Samras, R.K., Skop, R.A., and Milburn, D.A. (1974) An analysis of coupled extensional-torsional oscillations in wire rope, Journal of Engineering for Industry, ASME, pp. 1130-1135.
  23. Scalea, F.L., Rizzo, P., and Seible, F. (2003) Stress measurement and defect detection in steel strands by guided stress waves", Journal of Materials in Civil Engineering, ASCE, Vol. 15, No. 3, pp. 219-227. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(219)
  24. Stubbs, N. (1985) A general theory of non-destructive damage detection in structures, in: H.H.H. Leipholz (Ed.), Proceedings of the Second International Symposium on Structural Control, University of Waterloo, Ontario, Canada, Martinus Nijhoff Publishers, Dordrecht, Netherlands, pp. 694-713.
  25. Tadros, M.K., Omaishi, N.A., Seguirant, S.J., and Gallt, J.G. (2001) Prestress Losses in Pretensioned high-strength concrete bridge girders, Transportation Research Board, NCHRP Report No. 496.
  26. Washer, G.A., Green, R.E., and Pond, Jr. (2002) Velocity constants for ultrasonic stress measurement in prestressing tendons, Res. Nondestr. Eval., Vol. 14, pp. 81-94. https://doi.org/10.1080/09349840209409706
  27. Yen, J.Y.R., Chen, C.H., and Chung, S.C (2009) Coupling behavior of wire ropes subjected to tensile impulse, Journal of Engineering Mechanics, ASCE, Vol. 135, No. 8, pp. 796-801. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:8(796)