DOI QR코드

DOI QR Code

Applying Evaluation of Soil Erosion Models for Burnt Hillslopes - RUSLE, WEPP and SEMMA

산불사면에 대한 토양침식모형의 적용 평가 - RUSLE, WEPP, SEMMA

  • 박상덕 (강릉원주대학교 토목공학과) ;
  • 신승숙 (강릉원주대학교 방재연구소)
  • Received : 2010.10.29
  • Accepted : 2011.04.15
  • Published : 2011.06.30

Abstract

Applicability of three soil erosion models for burnt hillslopes was evaluated. The models were estimated with the data from plots established after tremendous wildfire occurred in the east coastal region. Soil erosion and surface runoff were simulated by the Water Erosion Prediction Project (WEPP) and the Revised Universal Soil Loss Equation (RUSLE) of application mode for disturbed forest areas and the Soil Erosion Model for Mountain Areas (SEMMA) developed for burnt hillslopes. Simulated sediment yield and surface runoff were compared with the measured those. In maximum value of sediment yield, three models was under-predicted and RUSLE and WEPP had difference of over two times. SEMMA showed the best model response coefficient, determination coefficient and the model efficiency. In application of models to the soil erosion according to the elapsed year after wildfire, all models were underestimated in initial stage disturbed by wildfire. Evaluation of models in this burnt hillslopes was shown the tends to under-predict soil erosion for larger measured values. Although a lot of sediment can be generated in small rainfall event as fine-grained soil of the high water repellency was exposed excessively right after wildfire, this under-prediction was shown that those models have a limit to estimate the weighted factors by wildfire.

산불 사면의 토양침식에 대하여 세 개의 토양침식 모형의 적용성을 평가하였다. 영동지역에서 발생한 2000년 대규모 산불지역 조사구에서 조사된 자료가 분석에 사용되었다. 본 연구에서 채택한 토양침식 모형은 경험적 모형인 RUSLE, 물리적 모형인 WEPP의 산림지역 적용 모드, 산불사면을 대상으로 개발된 SEMMA이다. 이들 모형으로 산정한 지표유출량과 토양 침식량을 관측치와 비교하였다. 적용결과 모든 모형들은 토사유출량의 최대치를 저평가 하였으며, RUSLE와 WEPP은 2배 이상의 차이를 보였다. SEMMA는 가장 좋은 모형반응계수, 결정계수, 모의효율을 나타내었다. 산불발생 경과연수에 따른 모형 적용 평가에서 산불에 의해 교란된 초기 단계에서는 모든 모형이 저평가하였다. 산불 사면에 대한 토양침식 모의 결과는 관측치가 크면 과소 예측하는 경향을 보였다. 산불직후 반발수력이 커진 고은입자 토양의 과대 노출로 작은 규모의 강우에도 많은 양의 토사유출이 발생할 수 있음에도 불구하고 이와 같이 과소 예측하는 것은 이들 모형이 산불의 영향으로 가중되는 토양침식 영향인자를 반영하는데 한계를 갖고 있기 때문으로 보인다.

Keywords

References

  1. 마수봉(2005) 소규모 조사구 규모의 산지사면에서 유출 및 토양 침식에 대한 WEPP의 적용. 공학석사논문, 강릉대학교, pp. 39-79.
  2. 박상덕 등(2001) 강원도 산불지역 재해의 저감대책 수립 연구보고서, 11-1310148-000088-01, 행정자치부 국립방재연구소, pp. 196-198.
  3. 박상덕 등(2005a) 산지의 토양침식모형(SEMMA) 실용화 연구 연구보고서, 11-1660030-00035-01, 소방방재청 국립방재연구소, pp. 55-64.
  4. 박상덕 등(2006) 지역특성을 고려한 토양침식모형의 매개변수 산정방안 연구보고서, 11-1660080-000017-01, 국립방재교육연구원 방재연구소, pp. 4-26.
  5. 박상덕(2008) 산불지역의 WEPP 매개변수 추정. 한국수자원학회 논문집, 한국수자원학회, 제41권 제6호, pp. 565-574.
  6. 박상덕, 신승숙, 이규송(2005b) 산불지역의 유출 및 토양침식 민감도. 한국수자원학회논문집, 한국수자원학회, 제38권, 제1호, pp. 60-61.
  7. 박상덕, 이규송(2007) 산불지역 강우유출 및 토사유출 조사 자료집. 강릉대학교 방재연구소.
  8. 신승숙(2002) 산지유역의 토사유출에 관한 연구. 공학석사논문, 강릉대학교, pp. 47-51.
  9. 신승숙, 박상덕, 조재웅, 이규송(2008) 양양 산불지역 지표유출 및 토양침식에 대한 식생회복의 영향. 대한토목학회논문집, 대한토목학회, 제28권 제4B호, pp. 393-403.
  10. 이규송 등(2004a) '04년도 산지시험유역 운영을 통한 토사재해 저감효과 분석 연구보고서, 11-1660030-000003-01, 소방방재청 국립방재연구소, pp. 97-118.
  11. 이규송, 박상덕(2005) 산화적지에서 지상부 식생구조와 표토에 분포하는 세근의 관계. 한국생태학회지, 한국생태학회, 제28권, 3호, pp. 149-156.
  12. 이규송, 정연숙, 김석철, 신승숙, 노찬호, 박상덕(2004b) 동해안산불 피해지에서 산불 후 경과 년 수에 따른 식생 구조의 발달. 한국생태학회지, 한국생태학회, 제27권 제2호, pp. 99-106.
  13. Andreu, V., Imeson, A.C., and Rubio, J.L. (2001) Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest. CATENA, Vol. 44. pp. 80-82.
  14. Arnold, J.G., Weltz, M.A., Alberts, E.E., and Flanagan, D.C. (1995) Chapter 8. Plant growth component. In: D. C. Flanagan, and M. A. Nearing (Editors), WEPP Technical Documentation, NSERL Report No. 10, West Lafayette, IN.
  15. Beasley, R.P., Huggins, L.F., and Monke, E.J. (1980) ANSWERS, a model for watershed planning. Transactions of the American Association of Agricultural Engineers Vol. 23, pp. 938-944. https://doi.org/10.13031/2013.34692
  16. Bhuyan, S.J., Kaltia, P.K., Janssen K.A., and Barnes, P.L. (2002) Soil loss Predictions with three erosion simulation models. Environmental Modeling & Software, Vol. 17, pp. 137-146.
  17. Covert, S.A. (2003) Accuracy Assessment of WEPP-based Erosion Models on Three Small, Harvested and Burned Forest Watersheds. MS Thesis, Univ. Idaho, Moscow, ID.
  18. Covert, S.A., Robichaud, P.R., Elliot, W.J., and Link, T.E. (2005) Evaluation of runoff prediction from WEPP-based erosion models for harvested and burned forest watersheds. Trans. ASAE, Vol. 48, pp. 1091-1100. https://doi.org/10.13031/2013.18519
  19. Dissmeyer, G.E. and Foster, G.R. (1984) A Guide for Predicting Sheet and Rill Erosion on Forest Land. Forest Service Technical Publication RA-TP6, United States Department of Agriculture.
  20. Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphres, G.S., and Wallbrink, P.J. (2006) Effects of differing wildfire severities on soil wettability and implications for hydrological response. Journal of Hydrology, Vol. 319. pp. 295-311. https://doi.org/10.1016/j.jhydrol.2005.06.038
  21. Dun, S., Wu, J.Q., Elliot, W.J., Robichaud, P.R., Flanagan, D.C., Frankenberger, J.R., Brown, R.E., and Xu. A.C. (2009) Adapting the water erosion prediction project (WEPP) model for forest applications. Journal of Hydrology, Vol. 366, pp. 46-54. https://doi.org/10.1016/j.jhydrol.2008.12.019
  22. Elliot, W.J., Luce, C.H., and Robichaud, P.R. (1996) Predicting sedimentation from timber harvest areas with the wepp model. In: Proc. 6th Fed. Interagency Sedimentation Conf., March 10-.14, 1996. Las Vegas, NV. pp. IX-46-53.
  23. Elliot, W.J., Robichaud, P.R., and Luce, C.H. (1995) Applying the WEPP erosion model to timber harvest areas. In: Proc. ASCE Watershed Manage Conf., August 14-.16, 1995. San Antonio, TX, pp. 83-92.
  24. Ferreira, V.A. and Smith, R.E. (1992) OPUS, an integrated simulation model for transport of nonpoint-source pollutants at the field scale, vol., user manual. U.S. Department of Agricultural Search Service 90. US Depart Agriculture-Agricultural Research Service, Washington DC.
  25. Flanagan, D.C. and Nearing, M.A.(eds)(1995) USDA-Water Erosion Prediction Project (WEPP) version 95.7, hillslope profile and watershed model documentation. National Soil Erosion Research Laboratory Report 10. US Department of Agriculture-Agricultural Search Service, West Lafayette.
  26. Gilley, J.E., Woolhiser, D.A., and McWhorter, D.B. (1985) Interrill soil erosion - Part II: Testing and use of model equations. Transaction of the American Society of Agricultural Engineers. Vol. 28, pp. 154-159. https://doi.org/10.13031/2013.32219
  27. Gronsten, H.A. (2006) Prediction of surface runoff and soil loss in southeastern Norway using the WEPP Hillslope model. Soil & Tillage Research, Vol. 82, pp. 186-199.
  28. Haan, D.T., Barfield, B.J., and Hayes, J.C. (1994). Design hydrology and sedimentology for small catchments. Academic Press. pp. 277-284.
  29. Heusch, B. (1970) L'erosion du Pre-Rif. Une etude quantitative de l'erosion hydraulique dans les collines marneuses du Pre-Rif occidental. Annales de Pecherches Forestieres de Maroc. Vol. 12, pp. 9-176.
  30. Inbar, M., Wittenberg, L., and Tamir M. (1997) Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel. IJWF, Vol. 7, pp. 285-294.
  31. Klik, A. and Zartl, A.S.(2001) Comparison of soil erosion simulations using WEPP and RUSLE with field measurements. Soil Erosion Research for the 21st Centry, ASAE.701P0007, pp. 350-353.
  32. Knisel, W.G.(ed) (1980) CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems. US Department of Agriculture Conservation Research Report 26. US Depart Agriculture-Science and Education Administration, Washington DC.
  33. Luce, C.H. (1995) Forests and wetlands. In: Ward, A.D., Elliot, W.J. (Eds.), Environmental Hydrology. Lewis Publishers, Boca Raton, FL, pp. 253-283.
  34. McCuen, R.H. (1973) The role of sensitivity analysis in hydraulic modeling. Journal of Hydrology. Vol. 18, pp. 37-53. https://doi.org/10.1016/0022-1694(73)90024-3
  35. Moffet, C.A., Pierson, F.B., Robichaud, P.R, Spaeth, K.E., and Hardegree, S.P. (2007) Modeling soil erosion on steep sagebrush rangeland before and after prescribed fire. CATENA Vol. 32, pp. 218-228.
  36. Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual models. Part I. A discussion of principles. J. Hydrol. Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  37. Nearing, M.A. (1998) Why soil erosion models over-predict small soil losses and uner-predict large soil losses. CATENA, Vol. 32, pp. 15-22. https://doi.org/10.1016/S0341-8162(97)00052-0
  38. Nyhan, J.W., Koch, S., Balice, R., and Loftin, S. (2001) Estimaton of soil erosion in burnt forest areas of the Cerro Grande Five in Los Alamos, New Mexico. Res. Pap. Los Alamos, NM: US Department of Energy, Ecology Group, Los Alamos National Laboratory. pp. 25.
  39. Odemerho, F.O. (1986) Variation in erosion-slope relationship on cut slopes along a tropical highway. Singapore Journal of Tropical Geography. Vol. 7, pp. 98-107. https://doi.org/10.1111/j.1467-9493.1986.tb00175.x
  40. Onda, Y., Dietrich, W.E., and Booker, F. (2008) Evolution of overland flow after a sever forest fire, pont reyes, California. CATENA, Vol. 72. pp. 13-20. https://doi.org/10.1016/j.catena.2007.02.003
  41. Poesen, J. (1984) The influence of slope angle on infiltration rate and Hortonian overland flow volume. Zeitschrift für Geomeorphologie Supplementband. Vol. 49, pp. 117-131.
  42. Quinn, N.W., Morgan, R.P.C., and Smith, A.J. (1980) Simulation of soil erosion induced by human trampling. Journal of Environmental Management. Vol. 10, pp. 155-165.
  43. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Epuation (RUSLE). US Department of Agriculture Handbook 703. US Department of Agriculture- Agricultural Search Service, Washington DC.
  44. Savabi, M.R. (2001) Determining soil water characteristics for application of WEPP model in south florida, ASAE, Vol. 44, No. 1, pp. 59-70. https://doi.org/10.13031/2013.2308
  45. Schroder, A. (2000) Chapter 11. WEPP, EUROSEM, E_D2: Results of Applications at the Plot Scale. In Soil Erosion: Application of Physically Based Models, Springer-Verlag Berlin Heidelberg New York.
  46. Scott, D.F. and van Wyke, D.B. (1990) The effects of wildfire on soil wettability and hydrological behavior of an afforested catchment. Journal of Hydrlolgy, Vol. 121. pp. 239-256. https://doi.org/10.1016/0022-1694(90)90234-O
  47. Sharpley, A.N. and Williams, J.R.(eds) (1990a) EPIC: Erosion/Productivity Impact Calculator 2, user manual. US Department of Agriculture Technical Bulletin 1768. US Department of Agriculture Agriculture - Agricultural Research Service, Washing DC.
  48. Sharpley. A.N. and Williams, J.R.(eds) (1990b) EPIC: Erosion/Productivity Impact Calculator2, user manual. US Department of Agriculture Technical Bulletin 1768. US Department of Agriculture- Agricultural Research Service, Washington DC.
  49. Smith, R.E. (1992) OPUS, an integrated simulation model for transport of nonpoint-source pollutants at the field scale I, documentation. US Department of Agriculture-Agricultural Research Service 98. US Department of Agriculture-Agricultural Research Service, Washington DC.
  50. Soto, B. and Diaz-Fierros, F. (1998) Runoff and soil erosion from areas of burnt scrub: Comparsion of experimental results with those predictied by the WEPP model. CATENA, Elsevier, Vol. 31, pp. 257-270. https://doi.org/10.1016/S0341-8162(97)00047-7
  51. Wilcox, B.P. and Simanton, J. R. (1998) Predicting Runoff in Semiarid Woodlands : Evaluation of the WEPP Model. Modeling Soil Erosion by Water, pp. 131-140.
  52. Wischmeier, W.H., Johnson, C.B., and Cross, B.C.(1971) A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, Vol. 26, No. 5, pp. 189-193.
  53. Wischmeier, W.H. and Smith, D.D. (1965) Predicting rainfall erosion losses from cropland east of the Rocky Mountains. Agriculture hand book 282. US Department of Agriculture, Washington DC.
  54. Wischmeier, W.H. and Smith, D.D. (1978) Predicting rainfall erosion losses - a guide to conservation planning. Agriculture Handbook 537. US Department of Agriculture-Science and Education Administration, Washingtion DC.
  55. Wohlgemuth, P.M., Hubbert, K.R., and Robichaud, P. (2001) The effect of log erosion barriers on post-fire hydrologic response and sediment yield in small forest watersheds, southern California. Hydrological Processes, Vol. 15, pp. 3053-3066. https://doi.org/10.1002/hyp.391
  56. Young, R.A., Onstad, C.A., Bosch, D.D., and Anderson, W.P. (1987) AGNPS, Agricultural Nonpoint Source Pollution Model, a watershed analysis tool. Agricultural Research Service Conservation Research Report 35. US Department of Agriculture- Agricultural Research Service, Washington DC.