DOI QR코드

DOI QR Code

Impedance-based Long-term Structural Health Monitoring for Jacket-type Tidal Current Power Plant Structure in Temperature and Load Changes

온도 및 하중 영향을 고려한 임피던스 기반 조류발전용 재킷 구조물의 장기 건전성 모니터링

  • 민지영 (한국과학기술원 건설및환경공학과) ;
  • 김유청 (한국과학기술원 건설및환경공학과) ;
  • 윤정방 (한국과학기술원 건설및환경공학과) ;
  • 이진학 (한국해양연구원 연안개발.에너지연구부)
  • Received : 2011.01.03
  • Accepted : 2011.08.17
  • Published : 2011.10.31

Abstract

Jacket-type offshore structures are always exposed to severe environmental conditions such as salt, high speed of current, wave, and wind compared with other onshore structures. In spite of the importance of maintaining the structural integrity for offshore structure, there are few cases to apply structural health monitoring (SHM) system in practice. The impedance-based SHM is a kind of local SHM techniques and to date, numerous techniques and algorithms have been proposed for local SHM of real-scale structures. However, it still requires a significant challenge for practical applications to compensate unknown environmental effects and to extract only damage features from impedance signals. In this study, the impedance-based SHM was carried out on a 1/20-scaled model of an Uldolmok current power plant structure under changes in temperature and transverse loadings. Principal component analysis (PCA) was applied using conventional damage index to eliminate principal components sensitive to environmental change. It was found that the proposed PCA-base approach is an effective tool for long-term SHM under significant environmental changes.

일반적으로 해양개발을 위하여 사용되는 재킷식 해양 구조물은 염분, 조류, 파도, 바람 등 극심한 환경적 요인에 의해 육상 시설물에 비해 열악한 환경에 노출되어 있으나, 이러한 구조물의 구조적 안전성 및 성능 확보를 위한 모니터링 시스템의 적용사례는 그다지 많지 않다. 임피던스 기반의 구조물 건전성 모니터링은 구조물의 국부적인 손상을 모니터링하는 기술로서 최근 실 구조물에의 적용에 대한 연구가 국내외에서 활발하게 이루어지고 있으나, 온도, 하중 등의 환경적 요인에 의한 영향을 최소화하고 손상에 의한 특성만을 효과적으로 추출하는 기술은 미흡한 상태이다. 따라서 본 연구에서는 재킷식 조류발전 지지구조물의 축소모형을 제작하여 온도와 정적 하중이 변하는 환경 하에서 임피던스 기반의 국부적 손상 모니터링에 관한 연구를 수행하였다. 환경에 의한 영향을 보상하기 위하여 기존의 손상지수에 대해 주성분 분석을 수행하였으며 환경 변화에 민감하게 반응하는 주성분을 선택하여 제거하였다. 이 후 손상지수를 모니터링한 결과, 제안된 주성분 분석 기반 접근법이 환경 영향 하에서의 장기 모니터링에 유효하게 사용될 수 있음을 확인하였다.

Keywords

References

  1. 김동현, 심재설, 민인기(2006) 이어도해양과학기지 구조물 계측신호 분석. 한국해안해양공학회지, 한국해안해양공학회, 제18권 제1호, pp. 53-62.
  2. 심재설, 전인식(2004) 이어도 해양과학기지의 설치 및 운영. 대한토목학회지, 대한토목학회, 제52권 제4호, pp. 28-36.
  3. 윤정방(2004) 스마트 센서 및 모니터링. 대한토목학회지, 대한토목학회, 제52권 재11호, pp. 23-27.
  4. 이광수, 박진순, 염기대(2009) 울돌목 조류발전시스템 개발. 2009년 춘계학술대회논문집, 한국소음진동공학회, pp. 410-411.
  5. 이문재(2003) 이어도 종합 해양 과학기지 제작/설치 공사 감리사례, 감리회보 9월호, 한국건설감리협회, pp. 28-39.
  6. 한국해양연구원(2002) 해양에너지 실용화 기술개발(II): 조력조류에너지, 해양수산부. 2002.8.
  7. 현대건설(2008) 울돌목 시험조류발전소 건설공사, 한국해양연구원
  8. 홍동수, 도한성, 나원배, 김정태(2009) 가속도-임피던스 특성을 이용한 강판형교의 하이브리드 구조건전성 모니터링. 대한토목학회논문집, 대한토목학회, 제29권 제1A호, pp. 61-73.
  9. Bhalla, S., Naidu, A.S.K., and Soh, C.K. (2002) Influence of structure- actuator interactions and temperature on piezoelectric mechatronic signatures for NDE. ISSS-SPIE Int'l Conferences on Smart Materials Structures and Systems, Bangalore, India.
  10. Giurgiutiu, V., Reynolds, A., and Rogers, C.A. (1999) Experimental investigation of E/M impedance health monitoring of spotwelded structure joints. Journal of Intelligent Material Systems and Structures, Vol. 10, pp. 802-812. https://doi.org/10.1106/N0J5-6UJ2-WlGV-Q8MC
  11. Giurgiutiu, V. (2008) Structural health monitoring with piezoelectric wafer active sensors. Academic Press, USA, pp. 363-434.
  12. Kim, J.T., Ryu, Y.S., Cho, H.M., and Stubbs, N. (2003) Damage identification in beam-type structures: frequency-based method vs. mode-shape-based method. Engineering Structures, Vol. 25, No. 1, pp. 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  13. Kim, J.-T., Yun, C.-B., and Yi, J.-H. (2003) Temperature effects on frequency-based damage detection in plate-girder bridges, KSCE Journal of Civil Engineering, Vol. 7, No. 6, pp. 725-733. https://doi.org/10.1007/BF02829141
  14. Koo, K.-Y., Park, S.-H., Lee, J.-J., and Yun, C.-B. (2008) Automated Impedance-based Structural Health Monitoring Incorporating Effective Frequency Shift for Compensating Temperature Effects, Journal of Intelligent Material Systems and Structures, Vol. 20, No. 4, pp. 367-377. https://doi.org/10.1177/1045389X08088664
  15. Krzanowski, W.J. (2000) Principals of Multivariate Analysis-A User's Perspective, Revised Edition, Oxford University Press, Oxford.
  16. Liang, C., Sun, F.P., and Rogers, C.A. (1996) Electro-mechanical impedance modeling of active material systems. Smart Materials and Structures, Vol. 5, pp. 171-186. https://doi.org/10.1088/0964-1726/5/2/006
  17. Mangal, L., Idichandy, V.G., and Ganapathy, C. (2001) Structural monitoring of offshore platforms using impulse and relaxation response, Ocean Engineering, Vol. 28, pp. 689-705. https://doi.org/10.1016/S0029-8018(00)00018-4
  18. Min, J., Park, S., Yun, C-B., and Song, B. (2010) Development of a Low-cost Multifunctional Wireless Impedance Sensor Node. Smart Systems and Structures, Vol. 6, No. 5-6, pp. 689-709. https://doi.org/10.12989/sss.2010.6.5_6.689
  19. Nichols, J.M. (2003) Structural health monitoring of offshore structures using ambient excitation, Applied Ocean Research, Vol. 25, pp. 101-114. https://doi.org/10.1016/j.apor.2003.08.003
  20. Park, G., Sohn, H., Farrar, C.R., and Inman, D.J. (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vibration Digest, Vol. 35, pp. 451-463. https://doi.org/10.1177/05831024030356001
  21. Park, G., Farrar, C.R., Rutherford, A.C., and Robertson, A.N. (2006) Piezoelectric active sensor self-diagnostics using electrical admittance measurements. Journal of Vibration and Acoustics, Vol. 128, pp. 469-476. https://doi.org/10.1115/1.2202157
  22. Park, S., Lee, J.J., Inman, D.J., and Yun, C-B. (2007) Electromechanical Impedance-based wireless structural health monitoring using PCA and k-means clustering algorithm. Journal of Intelligent Material Systems and Structures, Vol. 19, pp. 509-520. https://doi.org/10.1177/1045389X07077400
  23. Peairs, D.M., Tarazaga, P.A., and Inman, D.J. (2006) A study of the Correlation between PZT and MFC Resonance Peaks and Damage Detection Frequency Intervals Using the Impedance Method. International Conference on Noise and Vibration Engineering, Leuven, Belgium.
  24. Peeters, Bart, Maeck, Johan and De Roeck, Guido (2001) Vibration- based damage detection in civil engineering: excitation sources and temperature effects, Smart Materials and Structures, Vol. 10, No. 3, pp. 518-527. https://doi.org/10.1088/0964-1726/10/3/314
  25. Puskar, F.J., Spong, R.E., and Ku, A. (2006) Assessment of Fixed Offshore Platform Performance in Hurricane Ivan, Offshore Technology Conference, Houston, Texas, 10.4043/18325-MS.
  26. Spong, R.E. and Puskar, F. (2006) Assessment of fixed offshore platform performance in hurricanes andrew, Liliand Ivan. Report. MMS Project No. 549, Energo Engineering Inc., Houston, Texas.
  27. Sohn, Hoon, Worden, Keith, and Farrar, Charles R. (2002) Statistical damage classification under changing environmental and operational conditions, Journal of Intelligent Materials Systems and Structures, Vol. 13, No. 9, pp. 561-574. https://doi.org/10.1106/104538902030904
  28. Wintle, J.B. and Pargeter, R.J. (2005) Technical failure investigation of welded structures (or how to get the most out of failures). Engineering Failure Analysis, Vol. 12, pp. 1027-1037. https://doi.org/10.1016/j.engfailanal.2005.01.005
  29. Yi, J-H., Park, W-S., Park, J-S., and Lee, K-S. (2009) Structural health monitoring system for 'Uldolmok' tidal current power Pilot Plant and Its Applications. ASME International Conference on Ocean, Offshore and Arctic Engineering, Hawaii, USA, pp. 1139-1144.