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Abstract
In this study, we propose a novel, intuitive method of 
constructing an expression quantitative trait (eQT) net-
work that is related to the metabolic syndrome using 
LOD scores and peak loci for selected eQTs, based on 
the concept of gene-gene interactions. We selected 49 
eQTs that were related to insulin resistance. A variance 
component linkage analysis was performed to explore 
the expression loci of each of the eQTs. The linkage 
peak loci were investigated, and the "support zone" was 
defined within boundaries of an LOD score of 0.5 from 
the peak. If one gene was located within the "support 
zone" of the peak loci for the eQT of another gene, the 
relationship was considered as a potential "directed 
causal pathway" from the former to the latter gene. SNP 
markers under the linkage peaks or within the support 
zone were searched for in the database to identify the 
genes at the loci. Two groups of gene networks were 
formed separately around the genes IRS2 and UGCGL2. 
The findings indicated evidence of networks between 
genes that were related to the metabolic syndrome. The 
use of linkage analysis enabled the construction of di-
rected causal networks. This methodology showed that 
characterizing and locating eQTs can provide an effec-
tive means of constructing a genetic network.
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Introduction
The genetics of complex diseases is a continuous chal-

lenge in human genetic studies and chronic disease epi-
demiology due to the complexity of its biological implica-
tions. Metabolic syndrome, which is diverse in pathology 
and considered to be a growing health problem, con-
sists of a cluster of endocrine-metabolic disorders, such 
as hypertension, dyslipidemia, glucose intolerance, and 
abdominal obesity (Reaven, 2002). Insulin resistance has 
been considered an underlying risk factor of these en-
docrine disorders (Reaven, 1988), and its pathological or 
epidemiological characteristics have been continually in-
vestigated, including its genetic aspects. Genetic studies 
on metabolic syndrome have been conducted mostly 
using the candidate gene approach, with much success 
in identifying its genetic components (Bonnet et al., 
2008; Groop, 2000; Horenstein and Shuldiner, 2004; Ma 
et al., 2007; Mercado et al., 2002; Sale et al., 2006; 
Stern, 2003; Vasseur et al., 2006; Wang et al., 2004; 
Yang and Chuang, 2006). Some studies have focused 
on the relationships between components of the meta-
bolic syndrome (Kopf et al., 2008; Mussig et al., 2009) 
or among the candidate genes that are related to it 
(Foufelle and Ferre, 2002). However, the mechanism that 
underlies the interrelationships between related genes 
has been not fully determined, and although various 
genes contribute to the disease, the effect size of a sin-
gle gene is very weak.
  Understanding genetic components represents a chal-
lenge in not only insulin resistance but also most com-
plex diseases. To unravel the underlying genetic mecha-
nisms for complex diseases, various concepts and meth-
ods have been applied, such as gene-network (Wessels 
et al., 2001), pathway analysis (Yu et al., 2009), and 
gene-regulator approaches (de Jong, 2002; Hasty et al., 
2001). Gene set approaches, such as network modeling, 
can be utilized when information on the genetic pathway 
is lacking.
  Various studies have contributed to determining gene- 
gene interactions by constructing gene network models 
using several statistical approaches (Markou and Singh, 
2003a). Some studies have applied computational meth-
ods, such as neural network models (Markou and Singh, 
2003b; Vohradsky, 2001). Gene network models that are 
based on statistical and computational approaches have 
been helpful in detecting the "lines" of gene-gene inter-
actions. However, exploring the biological or functional 
directions of network lines still remains a challenge, be-
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cause the biological implication of these models has 
mostly been unconsidered and because interpreting the 
metabolic pathway among the networked genes can be 
difficult. The biological aspect of disease-related metab-
olites must be taken into account due to its importance 
in understanding gene-gene interactions. A clear exam-
ple can be seen in the components of metabolic syn-
drome, such as insulin, lipid, glucose, and adiponectin, 
which interact with each other. Glucose metabolism in-
teracts with lipid metabolism via the central nervous 
system (Schulingkamp et al., 2000). The insulin pathway 
is associated with adipose metabolism, which is evident 
in certain disorders, such as fatty liver disease (Bouzakri 
et al., 2006; Kantartzis et al., 2009; Previs et al., 2000). 
The challenges, nonetheless, are in detecting the inter-
actions and effects of genes on each other.
  To solve this problem, some studies have suggested 
the concept of a causal network, which consists of bio-
logical functions and implications in the gene network 
construction (Schadt and Lum, 2006). This approach has 
been useful in clarifying how genetic networks intervene 
in the biological pathway of animal populations (Kulp 
and Jagalur, 2006; Schadt et al., 2005; Tu et al., 2006). 
In humans, however, the causal genetic network re-
mains a challenge because of its complexity and numer-
ous associated factors, including environmental and be-
havioral variables. 
  In this study, we demonstrated a simple, intuitive 
method of constructing a directed causal network with 
an expression quantitative trait (eQT) that is related to 
metabolic syndrome. We aimed to explore the direction 
that supported the biological function of the eQTs and 
not base our interpretation solely on statistical signifi-
cance. To identify the direction, we used information 
from the peak loci of each eQT via variance component 
linkage analysis. The use of these eQTs, which was ob-
tained during mRNA transcription, can be helpful in 
identifying the genetic components that are associated 
with disease (Rockman and Kruglyak, 2006). In the 
Materials and Methods section, we describe the data 
that we obtained and the eQT selection criteria. The 
methodology of constructing the directed gene network 
modelvia linkage analysis is also referred to in this 
section. In the Results section, we present the linkage 
peak loci and logarithm of the odds (base 10) (LOD) 
scores of important eQTs. We also describe the gene 
network model that is associated with metabolic syn-
drome by matching the peak loci and several specific 
genes. In the Discussion section, we show the biological 
implication of our results with an inquiry into our meth-
odology of gene network construction.

Methods

Data and materials

Data were obtained from Problem 1 (Genetics of Gene 
Expression Variation in Humans) of the 15th Genetic 
Analysis Workshop (GAW15) and contained 194 in-
dividuals in 14 3-generation Centre d'Etude du Polymor-
phisme Humain (CEPH) Utah families (Cheung and 
Spielman, 2007; Morley et al., 2004). The expression 
levels of 3554 genes in lymphoblastic cells were ana-
lyzed as phenotypes. From these genes, we selected 49 
eQTs that are known to be associated with insulin re-
sistance, based on previous studies and gene 
databases. The basic characteristics of the selected 
eQTs are presented in Table 1.  
  The genotype data were collected for 2884 single- 
nucleotide polymorphism (SNP) markers across 22 auto-
somal chromosomes and the X-linked chromosome from 
194 individuals. Sex-averaged Rutgers Combined Linkage- 
Physical Map (Matise et al., 2007) was matched with the 
original map file to account for the recombination frac-
tion of given SNP markers.

Gene network model construction via linkage 
analysis

For each of the 49 metabolic syndrome-related eQTs, 
variance component linkage analysis, which is commonly 
used for mapping quantitative trait loci, was performed 
to search the genomic loci with a linkage peak across 
22 autosomal chromosomes. Note that the X-linked 23rd 
chromosome was excluded from the investigation. The 
linkage peak loci were investigated, and the "support 
zone" was defined within the bounds up to an LOD 
score of 0.5 from the peak. Fig. 1 represents an exam-
ple of a linkage peak point and support zone identi-
fication with an eQT of the IRS2 gene. 
  To explore gene-gene interactions, we studied the re-
lationships between all possible pairs of the 49 genes. 
We investigated whether SNP markers, which are lo-
cated on the linkage peak, were found in several specif-
ic genes. If one gene was located within the "support 
zone" of the peak loci for the eQT of another gene, the 
relationship was considered as a potential "directed 
causal pathway" from the former to the latter gene, ac-
cording to the following logic; if there is a linkage be-
tween eQT as a phenotype and a genetic locus, the 
causal direction can be assumed to be from the gene 
to the phenotype, rather than the opposite direction. 
Since a particular eQT represents the function of the un-
derlying gene (e.g., A), the greatest linkage signal is ob-
served on the locus of A. In addition, if the eQT for A 
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Fig. 1. Example of identification of the linkage peak point 

and support zone.

Gene ID eQT Location Gene ID eQT Location

203411_s_at LMNA 1q21.2-q21.3 209122_at ADFP 9p22.1

202377_at LEPR 1p31.2 209822_s_at VLDLR 9p24

209094_at DDAH1 1p22 203327_at IDE 10q23-q25

200788_s_at PEA15 1q21.1 209468_at LRP5 11q13.4

205282_at LRP8 1p34 203683_s_at VEGFB 11q13

206060_s_at PTPN22 1p13.3-p13.1 209541_at IGF1 12q22-q23

204852_s_at PTPN7 1q32.1 200921_s_at BTG1 12q22

205720_at POMC 2p23.3 206687_s_at PTPN6 12p13

202718_at IGFBP2 2q33-q34 209185_s_at IRS2 13q34

218257_s_at UGCGL1 2q14.3 218801_at UGCGL2 13q32.1

205480_s_at UGP2 2p14-p13 212858_at PAQR4 16p13.3

200643_at HDLBP 2q3 201508_at IGFBP4 17q12-q21.1

219497_s_at BCL11A 2p16.1 203685_at BCL2 18q21.33

203555_at PTPN18 2q21.1 213136_at PTPN2 18p11.3-p11.2

213521_at PTPN18 2q21.1 213792_s_at INSR 19p13.3-p13.2

208510_s_at PPARG 3p25 202068_s_at LDLR 19p13.3

203343_at UGDH 4p15.1 204908_s_at BCL3 19q13.1-q13.2

204201_s_at PTPN13 4q21.3 202716_at PTPN1 20q13.1-q13.2

207113_s_at TNF 6p21.3 206632_s_at APOBEC3B 22q13.1-q13.2 

201393_s_at IGF2R 6q26 204205_at APOBEC3G 22q13.1-q13.2 

210512_s_at VEGF 6p12 209546_s_at APOL1 22q13.1

205581_s_at NOS3 7q36 221013_s_at APOL2 22q12 

205207_at IL6 7p21 221087_s_at APOL3 22q13.1

205084_at BCAP29 7q22-q31 219716_at APOL6 22q12.3

202006_at PTPN12 7q11.23

Table 1. Locations and gene IDs of 49 insulin resistance-related eQTs located on 22 autosomal chromosomes

is also linked with another gene B, this linkage also im-
plies a causal direction from gene B to the eQT pheno-
type, which suggests a causal connection from gene B 
to gene A, which underlies the eQT. Genes from the 49 
selected eQTs were preferentially included in the meta-
bolic syndrome-related gene network model due to their 
association with the mechanisms of the disease. Other 
genes, which were identified with SNP markers in the 
support zone, were also added in the directed network 
model. Merlin 1.1.2 software was used for the variance 

component linkage analysis.

Results

Linkage analysis of eQTs

To identify the network model of the gene expression 
levels that were related to metabolic syndrome, variance 
component linkage analyses were performed individually 
with the 49 selected eQTs. Table 2 represents the LOD 
scores and linkage peak loci of 14 eQTs. We identified 
about 14 linkage peaks with LOD scores ＞2.0 for eQTs, 
with 6 of these eQTs displaying LOD scores ＞2.5. For 
the genes ADFP and IRS2, the highest LOD scores of 
3.09 and 3.08 were observed at SNPs on chromosomes 
5 and 2, respectively.

Comparison of linkage peak loci

To explore gene-gene interactions, we investigated whe-
ther the SNP markers on the linkage peak or in the 
"support zone" were included in several specific genes. 
The results showed that several SNP markers colo-
calized within these genes. Since we used a small SNP 
marker set, we considered that the 49 selected eQTs 
might not have been identified with the linkage analysis. 



146 Genomics & Informatics Vol. 9(4) 143-151, December 2011

LOD eQTs (peak LOD score) # SNP marker Linkage peak loci (cM)

   ＞3   ADFP (3.09) rs952382  Chr5 (69.94)

  IRS2 (3.08) rs599825, rs1369330  Chr2 (240.2)

   ＞2.5   BCAP29 (2.68) rs1326808, rs1372332   Chr9 (126.13)

rs1334071, rs944985, rs871121   Chr9 (126.38)

  PTPN1 (2.70) rs2007439, rs2051493, rs2040346 Chr22 (19.44)

  VLDLR (2.65) rs1889383, rs1209485, rs1959068, rs1959064 Chr14 (53.74)

(2.57) rs1425244  Chr11 (112.55)

  VEGFB (2.63) rs1360456, rs927099 Chr10 (60.68)

   ＞2   APOBEC3B (2.46) rs1866661, rs2028383   Chr2 (243.97)

  BTG1 (2.07) rs1425244  Chr11 (112.55)

  BCL2 (2.29) rs1334071, rs944985, rs871121   Chr9 (126.38)

  IDE (2.50) rs1013582, rs220860, rs220862  Chr11 (122.22)

(2.37) rs1914735, rs1914732   Chr2 (118.65)

(2.17) rs1341407, rs778305  Chr13 (107.14)

(2.02) rs931283 Chr5 (6.21)

(2.25) rs1333820, rs1333798, rs1556569 Chr13 (80.17)

  IGF1 (2.07) rs1507213, rs1032957 Chr12 (84.03)

  UGCGL2 (2.25) rs1414277  Chr1 (94.99)

(2.05) rs739200, rs715550, rs878847, rs80576 Chr22 (45.07)

  UGP2 (2.44) rs1851272, rs1521563, rs1402726, rs188914 Chr17 (54.41)

   (2.4) rs1425244  Chr11 (112.55)

(2.25) rs1333820, rs1333798, rs1556569 Chr13 (80.17)

  PTPN6 (2.04) rs265976, rs925197   Chr5 (199.58)

Table 2. LOD scores and linkage peak loci of the eQTs

eQT Peak location (Mbp/cM) # SNP markers Gene located on peak

    APOBEC3B  Chr2 (243.97/223.61) rs1866661 ASCL3

    BCAP29  Chr9 (126.13/116.61) rs1372332 ASTN2

    BCL2  Chr9 (126.38/116.89-117.07) rs1334071, rs944985, rs220862 ASTN2

    IDE Chr11 (122.22/114.74-114.80) rs1013582, rs220860, rs220862 IGSF4

    IGF1 Chr12 (99.65/84.02) rs1507213, rs1032957 LRRIQ1

    PTPN6  Chr5 (199.58/174.87) rs925197 SFXN1

    UGCGL2 Chr22 (45.07/34.86) rs80576 APOL3a

Chr22 (45.07/34.90) rs916336 APOL4

    VEGFB Chr10 (60.68/33.54-33.56) rs1360456, rs927099 NRP1

aGene included in the selected 49 metabolic syndrome-related eQTs.

Table 3. Genes located on the exact linkage peak loci of the eQTs

Therefore, we searched the location of each selected 
eQT in the NCBI gene database to determine whether 
the location of each eQT coincided with the linkage 
peak. 
  Tables 3 and 4 show the relationship between genes 
pairs with LOD scores of ＞2.0. Eight genes, LRRIQ1, 
APOL3, APOL4, IGSF4, ASTN2, NRP1, SFXN1, and 
ASCL3, were located on the peak of eQTs, known as 
IGF1, UGCGL2, IDE, BCL2, BCAP29, VEGFB, PTPN6, 
and APOBEC3B, respectively. Thirty-one genes were lo-
cated in the support zone. Among the total 39 genes at 
both the peak point and support zone, 7 genes, known 
as APOL3, IGFBP2, BTG1, UGCGL2, LEPR, APOL6, and 
IRS2, were included in the 49 selected eQTs. 

Directed gene network construction

The gene network was constructed with the selected 
eQTs, from which two groups of gene networks were 
formed, each around the genes IRS2 and UGCGL2 (Fig. 
2). IRS2 was grouped with 6 genes, APOBEC3B, BTG1, 
HDLBP, IDE, IGF1, and IGFBP2. To explore the biologi-
cal network, the functions of each gene were searched 
via the NCBI gene database. The IRS2 gene, which be-
longs to an insulin receptor substrate family, is known 
to play a role in the insulin signaling pathway. The cog-
rouped genes were also related to insulin metabolism. 
We found a stream from IGFBP2 to IDE, which con-
sisted completely of genes that play a role in insulin 
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eQT Peak location (Mbp/cM) LOD # SNP markers Support genes

  ADFP  Chr5 (69.94/54.26) 2.71 rs33721, rs27508 MAST4

  IRS2  Chr2 (240.2/221.60-221.66) 2.66 rs1425118 TMEM169

2.72 rs207908, rs207928 XRCC5

2.72 rs207823, rs83612 MARCH_4

IGFBP2a

2.69 rs1866661 ASCL3

2.63 rs1431079, rs1431077, rs1431087 KIAA1486

  APOBEC3B  Chr2 (243.97/223.61)   2.4 rs1431079, rs1431077, rs1431087 KIAA1486

2.35 rs933602 DNER

2.26 rs2053921, rs1669086 ARMC9

2.05 rs1284 GIGYF2

2.05 rs938569 NGEF

IGFBP2a

HDLBPa

  VLDLR Chr11 (112.55-106.54)   2.3 rs1013582 IGSF4

2.22 rs721487 DSCAML1

  IDE Chr11 (122.22/114.74-114.80) 2.16 rs721487 DSCAML1

Chr13 (105.71/109.07) 2.08 rs2039120, rs354439 IRS2a

  UGP2 Chr13 (81.17/87.53-87.56) 1.93 rs2031540 CLDN10

1.96 rs639527 HS6ST3

UGCGL2a

  UGCGL2  Chr1 (94.99/61.12) 1.83 rs991191, rs1465564, rs976574 INADL

1.89 rs2172962 IL12RB2

1.85 rs1511687 GNG12

LEPRa

Chr22 (45.07/34.86, 34.90) 1.89 rs1476576 OSM

1.89 rs1076297 CCDC157

  1.9 rs2157199, rs2032474, rs933214 LARGE

 APOL6a

  IGF1 Chr12 (99.65/84.02) 1.77 rs1882535, rs2141876 PPFIA2

1.87 rs1520723 CCDC41

BTG1a

  BTG1 Chr11 (112.5/106.54) 1.79 rs1318933 RDX

1.87 rs1013582, rs220860, rs220862 IGSF4

aGene included in the selected 49 metabolic syndrome-related eQTs.

Table 4. Genes located in the linkage support zone of the eQTs

metabolism. The UGCGL2 gene is known to transfer 
glycosyl groups (Arnold and Kaufman, 2003). It showed 
a directed network with 4 genes, known as APOL3, 
APOL6, LEPR, and UGP2. This grouped network showed 
a pathway of adipose, lipid, and glucose metabolites. 
LEPR, the leptin receptor, is known to be related to adi-
pose tissue mass regulation (Kershaw and Flier, 2004; 
Ronti et al., 2006). APOL3 and APOL6 both play a role 
in lipid metabolism, in lipid transportation and lipid bind-
ing, respectively. UGP2, which was identified as being 
influenced by UGCGL2 in our study, undertakes glucose 
transfer, especially in liver and muscle tissues. The 
shape of the gene network between the two groups is 
distinct. The network around the IRS2 gene displays a 
flow of the insulin pathway. However, in the second 
group surrounding the UGCGL2 gene, 3 of the other 
genes that were identified influence UGCGL2. According 

to these results, we can propose that IRS2 plays a role 
as an intermediator in the insulin metabolism pathway 
and that UGCGL2 appears to be at the center of the 
lipid and glucose metabolism pathway.

Discussion
In this study, we aimed to construct a directed gene 
network that was related to metabolic syndrome via 
comparison of the linkage peak loci and LOD scores of 
selected eQTs. Since the genetics of metabolic syndrome 
is polygenic and heterogeneous (Mercado et al., 2002), 
the gene set approach that we have presented in this 
study can be helpful in understanding the genetic com-
ponents of the disease. We explored the direction that 
supported the biological gene function. Two groups of 
gene networks were constructed, each surrounding the 
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Fig. 2. Constructed gene network around IRS2 and UGCGL2. Genes pertaining to the selected 49eQTs are presented in the

pink box. Other genes, identified with the SNP marker located in the support zone, are shown in the green box. The arrow

pointing from the former to the latter gene indicates the causal direction. (A) Gene network around IRS2 with 12 genes. (B) 

Gene network around UGCGL2 with 5 genes.

genes IRS2 and UGCGL2. The former networking group 
showed the pathway that was related to insulin metabo-
lism, and the latter represented lipid and glucose 
metabolism.
  We identified the direction among gene-gene inter-
actions, and several genes could be supported with 
known biological pathways, reported in previous studies. 
For example, the BTG1 gene was identified in our study 
as belonging to a group that was surrounded with IRS2, 
which belongs to a family of insulin receptor substrate 
proteins (Saltiel and Kahn, 2001). It supports the known 
biological correlation that gene expression of BTG1 is 
regulated by insulin (Kuiperij, 2004). Insulin also plays a 
role in the insulin-like growth factor-binding protein 
(IGFBP) system (Kelley et al., 1996), as shown in the re-
lationship between IRS2 and IGFBP2 in the present 
study. Also, we could find the IGF1 and IRS2 genes in 
the same network in this study, which could be sup-
ported by a previous report that demonstrated that a 
decrease in IGF1 causes the degradation of IRS2 (Rui 
et al., 2001). We also found studies that support our re-
sults regarding the second group (e.g., leptin is asso-
ciated with glucose levels) (Schwartz et al., 1996). 
  According to our results, the leptin receptor LEPR 
gene affects a glucose-related gene, UGCGL2. Apolipo-
protein-related genes, such as APOL3, APOL4, and 
APOL6, in our gene network are also associated with 
glucose metabolism, as suggested by increased apoli-
poprotein levels in glucose-impaired patients (Pietzsch 
et al., 1998). 
  Since the biological correlation between endocrine- 

metabolic components remains undiscovered, we could 
not confirm the relationship between all of the genes in 
our network. However, our results also support the evi-
dence of a gene network, which was not based solely 
on biological evidence. We intended to replicate our re-
sults with a prior gene network model, which included 
gene function with the network construction (Franke et 
al., 2006). A gene pathway previously known via Franke 
et al. was found in our study to have relatively simple 
structure associated with a higher LOD score. The net-
work between the genes ASCL and APOBEC3B 
(LOD=2.46) consists of only 3 genes. In contrast, BTG1 
and IGF1 (LOD=1.5) constitute a more complex network 
with 12 related genes (Fig. 3). We can suppose that 
higher LOD scores indicate a stronger effect on other 
genes and that their biological pathway is more directly 
associated with each other.
  This study presents a robust, directed causal network 
construction via linkage analysis. Linkage analysis and 
eQTs can be utilized to explore gene-gene interaction 
mechanisms, including their biological implications. We 
also anticipate that our method will help overcome the 
challenge of computational complexity and the cost of 
constructing genetic networks (Markou and Singh, 2003b; 
Wessels et al., 2001) due to the simplicity of linkage 
analysis to identify gene expression loci. 
  However, this method of genetic network construction 
has several limitations. A linkage analysis with additional 
SNP markers, which will increase its density, may gen-
erate more accurate LOD scores and increase the link-
age support zone. An analysis with more eQTs and oth-



Construction of Causal Genetic Network with eQTs 149

Fig. 3. Evidence of gene-gene 

interactions from the network 

database (Franke et al., 2006).

er criteria to establish boundaries of the "support zone" 
can also affect the results. However, in our study, the 
support zone had LOD scores ＞1.7. We considered 
this boundary to be acceptable, based on an LOD score 
range of 1.7-1.8, which has been considered potential 
evidence of linkage among genes (Avery et al., 2004; 
Comuzzie et al., 2001; Lindgren et al., 2002; Zhu et al., 
2002).
  Despite these limitations, we anticipate that our study 
will contribute to the understanding of the genetic com-
ponents that are involved in metabolic syndrome. Our 
methodology supports the characterization and location 
of eQTs as an effective approach for constructing a ge-
netic network.
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