DOI QR코드

DOI QR Code

고전압 응용분야를 위한 GaN 쇼트키 다이오드의 산화 공정

Oxidation Process of GaN Schottky Diode for High-Voltage Applications

  • 투고 : 2011.09.08
  • 심사 : 2011.11.19
  • 발행 : 2011.12.01

초록

1 kV high-voltage GaN Schottky diode is realized using GaN-on-Si template by oxidizing Ni-Schottky contact. The Auger electron spectroscopy (AES) analysis revealed the formation of $NiO_x$ at the top of Schottky contact. The Schottky contact was changed to from Ni/Au to Ni/Ni-Au alloy/Au/$NiO_x$ by oxidation. Ni diffusion into AlGaN improves the Schottky interface and the trap-assisted tunneling current. In addition, the reverse leakage current and the isolation-leakage current are efficiently suppressed by oxidation. The isolation-leakage current was reduced about 3 orders of magnitudes. The reverse leakage current was also decreased from 2.44 A/$cm^2$ to 8.90 mA/$cm^2$ under -100 V-biased condition. The formed group-III oxides ($AlO_x$ and $GaO_x$) during the oxidation is thought to suppress the surface leakage current by passivating surface dangling bonds, N-vacancies and process damages.

키워드

참고문헌

  1. N. Ikeda, et. al, "GaN power transistors on Si substrates for switching applications", Proc. IEEE, vol. 98, no. 7, pp. 1151-1161, July, 2010 https://doi.org/10.1109/JPROC.2009.2034397
  2. M.-W. Ha, et. al, "High-Voltage GaN SBD on Si Substrate by Suppressing Metal Spikes", Proc. 23rd ISPSD, pp. 231-234, 2011
  3. S.-C. Lee, et. al, "Suppression of leakage current of Ni/Au Schottky barrier diode fabricated on AlGaN/GaN heterostructure by oxidation", Jpn. J. Appl. Phys., vol. 45, no. 4B, pp. 3398-3400, April, 2006 https://doi.org/10.1143/JJAP.45.3398
  4. 하민우, 이승철, 허진철, 서광석, 한민구, "높은 항복전압 특성을 가지는 이중 게이트 AlGaN/GaN 고 전자이동도 트랜지스터", 전기학회논문지, 54권, 1호, pp. 18-22, 1월, 2005
  5. N. Ikeda, et. al, "Over 1.7 kV normally-off GaN hybrid MOS-HFETs with a lower on-resistance on a Si substrate", Proc. 23rd ISPSD, pp. 284-287, 2011
  6. A. Nakajima, M. H. Dhyani, E. M. S. Narayanan, Y. Sumida, and H. Kawai, "GaN based super HFETs over 700V using the polarization junction concept", Proc. 23rd ISPSD, pp. 280-283, 2011
  7. A. Dadgar, et. al, "MOVPE growth of GaN on Si(111) substrates", J. Crystal Growth, vol. 248, pp.556-562, Feb., 2003 https://doi.org/10.1016/S0022-0248(02)01894-8
  8. A. Watanabe, et. al, "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer", J. Crystal Growth, vol. 128, pp. 391-396, March, 1993 https://doi.org/10.1016/0022-0248(93)90354-Y
  9. S. Mizuno, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, "Large gate leakage current in AlGaN/GaN high electron mobility transistors", Jpn. J. Appl. Phys., vol. 41, no. 8, pp. 5125-5126, Aug., 2002 https://doi.org/10.1143/JJAP.41.5125
  10. S. Arulkumaran, et. al, "Electrical characteristics of Schottky contacts on GaN and Al0.11Ga0.89N", Jpn. J. Appl. Phys, vol. 39, no. 4B, p. L351-L353, April, 2000 https://doi.org/10.1143/JJAP.39.L351
  11. T. Sawada, et. al, "Characterization of metal/GaN Schottky interfaces based on I-V-T characteristics", Appl. Phys. Surf., vol. 190, no. 1-4, pp. 326-329, May, 2002 https://doi.org/10.1016/S0169-4332(01)00904-7
  12. Y.-J. Lin, Q. Ker, C.-Y. Ho, H.-C. Chang, and F.-T. Chien, "Nitrogen-vacancy-related defects and Fermi level pinning in n-GaN Schottky diodes", J. Appl. Phys., vol. 94, no. 3, pp. 1819-1822, Aug., 2003 https://doi.org/10.1063/1.1591417
  13. T. Hashizume and R. Nakasaki, "Discrete surface state related nitrogen-vacancy defect on plasma-treated GaN surfaces", Appl. Phys. Lett., vol. 80, no. 24, pp. 4564-4566, June, 2002 https://doi.org/10.1063/1.1485309
  14. H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, "Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors", J. Vac. Sci. Technol. B, vol. 21, no. 4, pp. 1844-1855, July/Aug, 2003 https://doi.org/10.1116/1.1589520
  15. T. Hashizume, J. Kotani, and H. Hasegawa, "Leakage mechanism in GaN and AlGaN Schottky interfaces", Appl. Phys. Lett., vol. 84, no. 24, pp. 4884-4886, June, 2004 https://doi.org/10.1063/1.1762980
  16. S. Karmalkar, D. M. Sathaiya, and M. S. Shur, "Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors", Appl. Phys. Lett., vol. 82, no. 22, pp. 3976-3978, June, 2003 https://doi.org/10.1063/1.1579852
  17. E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, "Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy", Appl. Phys. Lett., vol. 84, no. 4, pp. 535-537, Jan., 2004 https://doi.org/10.1063/1.1644029
  18. C. M. Jeon and J.-L. Lee, "Enhancement of Schottky barrier height on AlGaN/GaN heterostructure by oxidation annealing", Appl. Phys. Lett., vol. 82, no. 24, pp. 4301-4303, June, 2003 https://doi.org/10.1063/1.1583140
  19. M. Higashiwaki, S. Chowdhury, B. L. Swenson, and U. K. Mishra, "Effects of oxidation on surface chemical states and barrier height of AlGaN/GaN heterostructures", Appl. Phys. Lett., vol. 97, no, 22, pp. 222104, Nov., 2010 https://doi.org/10.1063/1.3522649
  20. O. Seok, Y.-S. Kim, J. Lim, and M.-K. Han, "Effect of oxygen annealing temperature on AlGaN/GaN HEMTs", Proc. 23rd ISPSD, pp. 235-238, 2011
  21. E. H. Rhoderick and R. H. Willams, Metal-Semiconductor Contacts, 2nd ed., Clarendon, Oxford, 1988
  22. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, "Schottky barrier on n-type GN grown by hydride vapor phase epitaxy", Appl. Phys. Lett., vol 63, no. 19, pp. 2676-2678, Nov., 1993 https://doi.org/10.1063/1.110417
  23. 하민우, 노정현, 최홍구, 송홍주, 이준호, 김영실, 한민구, 한철구, "열 산화공정을 이용하여 제작된 고전압 GaN 쇼트키 장벽 다이오드", 2011년도 대한전기학회하계학술대회 논문집, pp. 1418-1419, 2011