DOI QR코드

DOI QR Code

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review

  • Gunawardana, Buddhika (Department of Civil and Environmental Engineering, University of Auckland) ;
  • Singhal, Naresh (Department of Civil and Environmental Engineering, University of Auckland) ;
  • Swedlund, Peter (Department of Chemistry, University of Auckland)
  • Received : 2011.09.10
  • Accepted : 2011.11.20
  • Published : 2011.12.31

Abstract

Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.

Keywords

References

  1. Keane MA. A review of catalytic approaches to waste minimization: case study--liquid-phase catalytic treatment of chlorophenols. J. Chem. Technol. Biotechnol. 2005;80:1211-1222. https://doi.org/10.1002/jctb.1325
  2. Arcand Y, Hawari J, Guiot SR. Solubility of pentachlorophenol in aqueous solutions: the pH effect. Water Res. 1995;29:131-136. https://doi.org/10.1016/0043-1354(94)E0104-E
  3. Agency for Toxic Substances and Disease Registry. Toxicological profile for chlorophenols. Atlanta: Agency for Toxic Substances and Disease Registry, U.S Department of Health and Human Services; 1999.
  4. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B. Environ. 2004;47:219-256. https://doi.org/10.1016/j.apcatb.2003.09.010
  5. Kim YH, Carraway ER. Dechlorination of chlorinated phenols by zero valent zinc. Environ. Technol. 2003;24:1455-1463. https://doi.org/10.1080/09593330309385690
  6. Patel UD, Suresh S. Electrochemical treatment of pentachlorophenol in water and pulp bleaching effluent. Sep. Purif. Technol. 2008;61:115-122. https://doi.org/10.1016/j.seppur.2007.10.004
  7. Keith L, Telliard W. Priority pollutants. I. A perspective view. Environ. Sci. Technol. 1979;13:416-423. https://doi.org/10.1021/es60152a601
  8. U.S. Environmental Protection Agency. Protection of environment: toxic pollutants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jul 10]. Available from: http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div8&view=text&node=40:28.0.1.1.2.0.1.6&idno=40.
  9. U.S. Environmental Protection Agency. Priority pollutants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jun 6]. Available from: http://water.epa.gov/scitech/methods/cwa/pollutants.cfm.
  10. Tanjore S, Viraraghavan T. Pentachlorophenol--water pollution impacts and removal technologies. Int. J. Environ. Stud. 1994;45:155-164. https://doi.org/10.1080/00207239408710889
  11. U.S. Environmental Protection Agency. Drinking water contaminants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jun 6]. Available from: http://water.epa.gov/drink/contaminants/index.cfm.
  12. U.S. Environmental Protection Agency. Toxicological review of pentachlorophenol: in support of summary information on the Integrated Risk Information System (IRIS). Washington, DC: U.S. Environmental Protection Agency; 2010. p. 288.
  13. McLean D, Eng A, Dryson E, et al. Morbidity in former sawmill workers exposed to pentachlorophenol (PCP): a cross-sectional study in New Zealand. Am. J. Ind. Med. 2009;52:271-281. https://doi.org/10.1002/ajim.20677
  14. Wightman PG, Fein JB. Experimental study of 2,4,6-Trichlorophenol and pentachlorophenol solubilities in aqueous solutions: derivation of a speciation-based chlorophenol solubility model. Appl. Geochem. 1999;14:319-331. https://doi.org/10.1016/S0883-2927(98)00054-7
  15. Shiu WY, Ma KC, Varhanickova D, Mackay D. Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 1994;29:1155-1224. https://doi.org/10.1016/0045-6535(94)90252-6
  16. Anotai J, Wuttipong R, Visvanathan C. Oxidation and detoxification of pentachlorophenol in aqueous phase by ozonation. J. Environ. Manage. 2007;85:345-349. https://doi.org/10.1016/j.jenvman.2006.10.001
  17. Dai Y, Li F, Ge F, Zhu F, Wu L, Yang X. Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron. J. Hazard. Mater. 2006;137:1424-1429. https://doi.org/10.1016/j.jhazmat.2006.04.025
  18. Tamer E, Hamid Z, Aly AM, Ossama ET, Bo M, Benoit G. Sequential UV-biological degradation of chlorophenols. Chemosphere 2006;63:277-284. https://doi.org/10.1016/j.chemosphere.2005.07.022
  19. Dabo P, Cyr A, Laplante F, Jean F, Menard H, Lessard J. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ. Sci. Technol. 2000;34:1265-1268. https://doi.org/10.1021/es9911465
  20. De AK, Dutta BK, Bhattacharjee S. Reaction kinetics for the degradation of phenol and chlorinated phenols using fenton's reagent. Environ. Prog. 2006;25:64-71. https://doi.org/10.1002/ep.10104
  21. Yang CF, Lee CM. Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system. J. Hazard. Mater. 2008;152:159-165. https://doi.org/10.1016/j.jhazmat.2007.06.102
  22. Singh S, Chandra R, Patel DK, Reddy MM, Rai V. Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture. Bioresour. Technol. 2008;99:5703-5709. https://doi.org/10.1016/j.biortech.2007.10.022
  23. Van Nooten T, Springael D, Bastiaens L. Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers. Environ. Sci. Technol. 2008;42:1680-1686. https://doi.org/10.1021/es071760d
  24. Headley JV, Peru KM, Du JL, Gurprasad N, McMartin DW. Evaluation of the apparent phytodegradation of pentachlorophenol by Chlorella pyrenoidosa. J. Environ. Sci. Health A. Toxic. Hazard. Subst. Environ. Eng. 2008;43:361-364. https://doi.org/10.1080/10934520701795491
  25. Morales J, Hutcheson R, Cheng IF. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles. J. Hazard. Mater. 2002;90:97-108. https://doi.org/10.1016/S0304-3894(01)00336-3
  26. Kim YH, Carraway ER. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Technol. 2000;34:2014-2017. https://doi.org/10.1021/es991129f
  27. Patel UD, Suresh S. Effects of solvent, pH, salts and resin fatty acids on the dechlorination of pentachlorophenol using magnesium-silver and magnesium-palladium bimetallic systems. J. Hazard. Mater. 2008;156:308-316. https://doi.org/10.1016/j.jhazmat.2007.12.021
  28. Choi JH, Choi SJ, Kim YH. Hydrodechlorination of 2,4,6-trichlorophenol for a permeable reactive barrier using zero-valent iron and catalyzed iron. Korean J. Chem. Eng. 2008;25:493-500. https://doi.org/10.1007/s11814-008-0083-5
  29. Choi JH, Kim YH. Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc. J. Hazard. Mater. 2009;166:984-991. https://doi.org/10.1016/j.jhazmat.2008.12.004
  30. Marshall WD, Kubatova A, Lagadec AJ, Miller DJ, Hawthorne SB. Zero-valent metal accelerators for the dechlorination of pentachlorophenol (PCP) in subcritical water. Green Chem. 2002;4:17-23. https://doi.org/10.1039/b108337f
  31. Cheng R, Zhou W, Wang JL, et al. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect. J. Hazard. Mater. 2010;180:79-85. https://doi.org/10.1016/j.jhazmat.2010.03.068
  32. Estevinho BN, Ratola N, Alves A, Santos L. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues. J. Hazard. Mater. 2006;137:1175-1181. https://doi.org/10.1016/j.jhazmat.2006.04.001
  33. Estevinho BN, Martins I, Ratola N, Alves A, Santos L. Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. J. Hazard. Mater. 2007;143:535-540. https://doi.org/10.1016/j.jhazmat.2006.09.072
  34. Deng S, Ma R, Yu Q, Huang J, Yu G. Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. J. Hazard. Mater. 2008.
  35. Mathialagan T, Viraraghavan T. Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresour. Technol. 2009;100:549-558. https://doi.org/10.1016/j.biortech.2008.06.054
  36. Jou CJ. Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy. J. Hazard. Mater. 2008;152:699-702. https://doi.org/10.1016/j.jhazmat.2007.07.036
  37. Zhang W, Quan X, Wang J, Zhang Z, Chen S. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere 2006;65:58-64. https://doi.org/10.1016/j.chemosphere.2006.02.060
  38. Lee SH, Carberry JB. Biodegradation of PCP enhanced by chemical oxidation pretreatment. Water Environ. Res 1992;64:682-690. https://doi.org/10.2175/WER.64.5.4
  39. Choi JH, Kim YH, Choi SJ. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: laboratory studies. Chemosphere 2007;67:1551-1557. https://doi.org/10.1016/j.chemosphere.2006.12.029
  40. Chen YC, Lan HX, Zhan HY, Fu SY. Simultaneous anaerobic-aerobic biodegradation of halogenated phenolic compound under oxygen-limited conditions. J. Environ. Sci. 2005;17:873-875.
  41. Bokare AD, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 2009;43:7130-7135. https://doi.org/10.1021/es9013823
  42. Boronina T, Klabunde KJ, Sergeev G. Destruction of organohalides in water using metal particles: carbon tetrachloride/water reactions with magnesium, tin, and zinc. Environ. Sci. Technol. 1995;29:1511-1517. https://doi.org/10.1021/es00006a012
  43. Arning MD, Minteer SD. Electrode potentials. In: Zoski CG, ed. Handbook of electrochemistry. Boston: Elsevier; 2007. p. 813-827.
  44. Speight JG. Lange's handbook of chemistry. 16th ed. New York: McGraw-Hill; 2005. p. 1572.
  45. Zhang WX, Wang CB, Lien HL. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 1998;40:387-395. https://doi.org/10.1016/S0920-5861(98)00067-4
  46. Gavaskar AR. Design and construction techniques for permeable reactive barriers. J. Hazard. Mater. 1999;68:41-71. https://doi.org/10.1016/S0304-3894(99)00031-X
  47. Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ. Eng. Sci. 2007;24:401-423. https://doi.org/10.1089/ees.2006.0071
  48. Thiruvenkatachari R, Vigneswaran S, Naidu R. Permeable reactive barrier for groundwater remediation. J. Ind. Eng. Chem. 2008;14:145-156. https://doi.org/10.1016/j.jiec.2007.10.001
  49. Gillham RW, Ohannesin SF. Enhanced degradation of halogenated aliphatics by zero valent iron. Ground Water 1994;32:958-967. https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
  50. Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994;28:2045-2053. https://doi.org/10.1021/es00061a012
  51. Johnson TL, Scherer MM, Tratnyek PG. Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 1996;30:2634-2640. https://doi.org/10.1021/es9600901
  52. Lien HL, Zhang WX. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf. A. Physicochem. Eng. Asp. 2001;191:97-105. https://doi.org/10.1016/S0927-7757(01)00767-1
  53. McDowall L. Degradation of toxic chemicals by zero-valent metal nanoparticles--a literature review. Defence Science and Technology Organisation, Australia; 2005.
  54. Ko SO, Lee DH, Kim YH. Kinetic studies of reductive dechlorination of chlorophenols with Ni/Fe bimetallic particles. Environ. Technol. 2007;28:583-593. https://doi.org/10.1080/09593332808618818
  55. Wei J, Xu X, Liu Y, Wang D. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res. 2006;40:348-354. https://doi.org/10.1016/j.watres.2005.10.017
  56. Liu Y, Yang F, Yue PL, Chen G. Catalytic dechlorination of chlorophenols in water by palladium/iron. Water Res. 2001;35:1887-1890. https://doi.org/10.1016/S0043-1354(00)00463-2
  57. Zhou T, Li Y, Lim TT. Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: comparisons with other bimetallic systems, kinetics and mechanism. Sep. Purif. Technol. 2010;76:206-214. https://doi.org/10.1016/j.seppur.2010.10.010
  58. Tong SP, Wei H, Ma CA, Liu WP. Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water. J. Zhejiang Univ. Science 2005;6A:627-631. https://doi.org/10.1631/jzus.2005.A0627
  59. Jovanovic GN, Plazl PZ, Sakrittichai P, Al-Khaldi K. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst. Ind. Eng. Chem. Res. 2004;44:5099-5106.
  60. Arnold WA, Roberts AL. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 2000;34:1794-1805. https://doi.org/10.1021/es990884q
  61. Schlicker O, Ebert M, Fruth M, Weidner M, Wust W, Dahmke A. Degradation of TCE with iron: the role of competing chromate and nitrate reduction. Ground Water 2000;38:403-409. https://doi.org/10.1111/j.1745-6584.2000.tb00226.x
  62. Chen JL, Al-Abed SR, Ryan JA, Li Z. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. J. Hazard. Mater. 2001;83:243-254. https://doi.org/10.1016/S0304-3894(01)00193-5
  63. Geiger Cherie L, Carvalho-Knighton K, Novaes-Card S, Maloney P, DeVor R. A review of environmental applications of nanoscale and microscale reactive metal particles. ACS Symp. Ser. 2009;1027:1-20.
  64. Cho HH, Park JW. Effect of coexisting compounds on the sorption and reduction of trichloroethylene with iron. Environ. Toxicol. Chem. 2005;24:11-16. https://doi.org/10.1897/04-051R.1
  65. Kim YH. Reductive dechlorination of chlorinated aliphatic and aromatic compounds using zero valent metals: modified metals and electron mediators [dissertation]. College Station: Texas A&M University; 1999.
  66. Cheng R, Wang Jl, Zhang WX. Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0. J. Hazard. Mater. 2007;144:334-339. https://doi.org/10.1016/j.jhazmat.2006.10.032
  67. Noubactep C, Care S. On nanoscale metallic iron for groundwater remediation. J. Hazard. Mater. 2010;182:923-927. https://doi.org/10.1016/j.jhazmat.2010.06.009
  68. Lim TT, Zhu BW. Practical applications of bimetallic nanoiron particles for reductive dehalogenation of haloorganics: prospects and challenges. ACS Symp. Ser. 2009;1027:245-261.
  69. Burris DR, Allen-King RM, Manoranjan VS, Campbell TJ, Loraine GA, Deng B. Chlorinated ethene reduction by cast iron: sorption and mass transfer. J. Environ. Eng. 1998;124:1012-1019. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:10(1012)
  70. Deng B, Hu S, Whitworth TM, Lee R. Trichloroethylene reduction on zero valent iron: probing reactive versus nonreactive sites. ACS Symp. Ser. 2003;837:181-205.
  71. Bi E, Devlin JF, Huang B, Firdous R. Transport and kinetic studies To characterize reactive and nonreactive sites on granular iron. Environ. Sci. Technol. 2010;44:5564-5569. https://doi.org/10.1021/es101012p
  72. Burris DR, Campbell TJ, Manoranjan VS. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environ. Sci. Technol. 1995;29:2850-2855. https://doi.org/10.1021/es00011a022
  73. Gotpagar J, Lyuksyutov S, Cohn R, Grulke E, Bhattacharyya D. Reductive dehalogenation of trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies. Langmuir 1999;15:8412-8420. https://doi.org/10.1021/la990325x
  74. Noubactep C. A critical review on the process of contaminant removal in Fe 0-H2O systems. Environ. Technol. 2008;29:909-920. https://doi.org/10.1080/09593330802131602
  75. Weber EJ. Iron-mediated reductive transformations: investigation of reaction mechanism. Environ. Sci. Technol. 1996;30:716-719. https://doi.org/10.1021/es9505210
  76. Su C, Puls RW. Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 1999;33:163-168. https://doi.org/10.1021/es980481a
  77. Deng B, Burris DR, Campbell TJ. Reduction of vinyl chloride in metallic iron-water systems. Environ. Sci. Technol. 1999;33:2651-2656. https://doi.org/10.1021/es980554q
  78. Xu X, Zhou M, He P, Hao Z. Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water. J. Hazard. Mater. 2005;123:89-93. https://doi.org/10.1016/j.jhazmat.2005.04.002
  79. Doong RA, Wu SC. Reductive dechlorination of chlorinated hydrocarbons in aqueous solutions containing ferrous and sulfide ions. Chemosphere 1992;24:1063-1075. https://doi.org/10.1016/0045-6535(92)90197-Y
  80. Wang J, Farrell J. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy. Environ. Sci. Technol. 2003;37:3891-3896. https://doi.org/10.1021/es0264605
  81. Li T, Farrell J. Mechanisms controlling chlorocarbon reduction at iron surfaces. ACS Symp. Ser. 2002;806:397-410.
  82. Kim JS, Shea PJ, Yang JE, Kim JE. Halide salts accelerate degradation of high explosives by zerovalent iron. Environ. Pollut. 2007;147:634-641. https://doi.org/10.1016/j.envpol.2006.10.010
  83. Fontana MG, Greene ND. Corrosion engineering. 2nd ed. New York: McGraw-Hill; 1978.
  84. Jones DA. Principles and prevention of corrosion. 2nd ed. Upper Saddle River: Prentice Hall; 1996.
  85. Choi JH, Choi SJ, Kim YH. Liquid-liquid extraction methods to determine reductive dechlorination of 2,4,6-trichlorophenol by zero-valent metals and zero-valent bimetals. Sep. Sci. Technol. 2008;43:3624-3636. https://doi.org/10.1080/01496390802219067
  86. Bandara J, Mielczarski JA, Kiwi J. I. Adsorption mechanism of chlorophenols on iron oxides, titanium oxide and aluminum oxide as detected by infrared spectroscopy. Appl. Catal. B. Environ. 2001;34:307-320. https://doi.org/10.1016/S0926-3373(01)00224-7
  87. Kung KH, McBride MB. Bonding of chlorophenols on iron and aluminum oxides. Environ. Sci. Technol. 1991;25:702-709. https://doi.org/10.1021/es00016a015
  88. Noubactep C. The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 2010;36:663-670.
  89. Noubactep C. Processes of contaminant removal in "Fe0-$H_2O$" systems revisited: the importance of co-precipitation Open Environ. J. 2007;1:9-13. https://doi.org/10.2174/1874233500701010009
  90. U.S. Environmental Protection Agency. Permeable reactive barrier technologies for contaminant remediation. Washington, DC: U.S. Environmental Protection Agency; 1998.
  91. Farrell J, Kason M, Melitas N, Li T. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 2000;34:514-521. https://doi.org/10.1021/es990716y
  92. Huang YH, Zhang TC, Shea PJ, Comfort SD. Effects of oxide coating and selected cations on nitrate reduction by iron metal. J. Environ. Qual. 2003;32:1306-1315. https://doi.org/10.2134/jeq2003.1306
  93. Satapanajaru T, Comfort SD, Shea PJ. Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J. Environ. Qual. 2003;32:1726-1734. https://doi.org/10.2134/jeq2003.1726
  94. Ritter K, Odziemkowski MS, Simpgraga R, Gillham RW, Irish DE. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron. J. Contam. Hydrol. 2003;65:121-136. https://doi.org/10.1016/S0169-7722(02)00234-6
  95. Kiser JR, Manning BA. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite. J. Hazard. Mater. 2010;174:167-174. https://doi.org/10.1016/j.jhazmat.2009.09.032
  96. Schrick B, Blough JL, Jones AD, Mallouk TE. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater. 2002;14:5140-5147. https://doi.org/10.1021/cm020737i
  97. Patel UD, Suresh S. Dechlorination of chlorophenols using magnesium-palladium bimetallic system. J. Hazard. Mater. 2007;147:431-438. https://doi.org/10.1016/j.jhazmat.2007.01.029
  98. Chen LH, Huang CC, Lien HL. Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 2008;73:692-697. https://doi.org/10.1016/j.chemosphere.2008.07.005
  99. Wang X, Chen C, Liu H, Ma J. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Ind. Eng. Chem. Res. 2008;47:8645-8651. https://doi.org/10.1021/ie701762d
  100. Elliott DW, Zhang WX. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 2001;35:4922-4926. https://doi.org/10.1021/es0108584
  101. Muftikian R, Fernando Q, Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Res. 1995;29:2434-2439. https://doi.org/10.1016/0043-1354(95)00102-Q
  102. Li T, Farrell J. Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ. Sci. Technol. 2000;34:173-179. https://doi.org/10.1021/es9907358
  103. Agarwal S, Al-Abed SR, Dionysiou DD. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environ. Sci. Technol. 2007;41:3722-3727. https://doi.org/10.1021/es062886y
  104. Cheng SF, Wu SC. The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere 2000;41:1263-1270. https://doi.org/10.1016/S0045-6535(99)00530-5
  105. Cheng SF, Wu SC. Feasibility of using metals to remediate water containing TCE. Chemosphere 2001;43:1023-1028. https://doi.org/10.1016/S0045-6535(00)00263-0
  106. Cheng IF, Fernando Q, Korte N. Electrochemical dechlorination of 4-chlorophenol to phenol. Environ. Sci. Technol. 1997;31:1074-1078. https://doi.org/10.1021/es960602b
  107. Wang CB, Zhang WX. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997;31:2154-2156. https://doi.org/10.1021/es970039c
  108. Xu Y, Zhang WX. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res. 2000;39:2238-2244. https://doi.org/10.1021/ie9903588
  109. Lin CJ, Lo SL, Liou YH. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. J. Hazard. Mater. 2004;116:219-228. https://doi.org/10.1016/j.jhazmat.2004.09.005
  110. Cwiertny DM, Bransfield SJ, Roberts AL. Influence of the oxidizing species on the reactivity of iron-based bimetallic reductants. Environ. Sci. Technol. 2007;41:3734-3740. https://doi.org/10.1021/es062993s
  111. Bransfield SJ, Cwiertny DM, Roberts AL, Fairbrother DH. Influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane. Environ. Sci. Technol. 2006;40:1485-1490. https://doi.org/10.1021/es051300p
  112. Graham LJ, Jovanovic G. Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidized bed: implications for sludge and liquid remediation. Chem. Eng. Sci. 1999;54:3085-3093. https://doi.org/10.1016/S0009-2509(98)00393-5
  113. Tian H, Li J, Mu Z, Li L, Hao Z. Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep. Purif. Technol. 2009;66:84-89. https://doi.org/10.1016/j.seppur.2008.11.018
  114. Cwiertny DM, Bransfield SJ, Livi KJ, Fairbrother DH, Roberts AL. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environ. Sci. Technol. 2006;40:6837-6843. https://doi.org/10.1021/es060921v
  115. Hoke JB, Gramiccioni GA, Balko EN. Catalytic hydrodechlorination of chlorophenols. Appl. Catal. B. Environ. 1992;1:285-296. https://doi.org/10.1016/0926-3373(92)80054-4
  116. Patel U, Suresh S. Dechlorination of chlorophenols by magnesium-silver bimetallic system. J. Colloid Interface Sci. 2006;299:249-259. https://doi.org/10.1016/j.jcis.2006.01.047
  117. Yuan G, Keane MA. Catalyst deactivation during the liquid phase hydrodechlorination of 2,4-dichlorophenol over supported Pd: influence of the support. Catal. Today 2003;88:27-36. https://doi.org/10.1016/j.cattod.2003.08.004
  118. Noubactep C. The suitability of metallic iron for environmental remediation. Environ. Progr. Sustain. Energ. 2010;29:286-291. https://doi.org/10.1002/ep.10406
  119. Odziemkowski MS, Schuhmacher TT, Gillham RW, Reardon EJ. Mechanism of oxide film formation on iron in simulating groundwater solutions: raman spectroscopic studies. Corros. Sci. 1998;40:371-389. https://doi.org/10.1016/S0010-938X(97)00141-8
  120. Noubactep C, Schoner A. Metallic iron for environmental remediation: learning from electrocoagulation. J. Hazard. Mater. 2010;175:1075-1080. https://doi.org/10.1016/j.jhazmat.2009.09.152
  121. Furukawa Y, Kim JW, Watkins J, Wilkin RT. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ. Sci. Technol. 2002;36:5469-5475. https://doi.org/10.1021/es025533h
  122. Scherer MM, Balko BA, Tratnyek PG. The role of oxides in reduction reactions at the metal-water interface. ACS Symp. Ser. 1999;715:301-322.
  123. Erbs M, Bruun Hansen HC, Olsen CE. Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (green rust). Environ. Sci. Technol. 1998;33:307-311.
  124. Blowes DW, Ptacek CJ, Benner SG, McRae CW, Bennett TA, Puls RW. Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 2000;45:123-137. https://doi.org/10.1016/S0169-7722(00)00122-4
  125. Gu B, Phelps TJ, Liang L, et al. Biogeochemical dynamics in zero-valent iron columns:implications for permeable reactive barriers. Environ. Sci. Technol. 1999;33:2170-2177. https://doi.org/10.1021/es981077e
  126. Roh Y, Lee SY, Elless MP. Characterization of corrosion products in the permeable reactive barriers. Environ. Geol. 2000;40:184-194. https://doi.org/10.1007/s002540000178
  127. Kamolpornwijit W, Liang L, Moline GR, Hart T, West OR. Identification and quantification of mineral precipitation in Fe 0 filings from a column study. Environ. Sci. Technol. 2004;38:5757-5765. https://doi.org/10.1021/es035085t
  128. Phillips DH, Nooten TV, Bastiaens L, et al. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ. Sci. Technol. 2010;44:3861-3869. https://doi.org/10.1021/es902737t
  129. Kohn T, Livi KJ, Roberts AL, Vikesland PJ. Longevity of granular iron in groundwater treatment processes: corrosion product development. Environ. Sci. Technol. 2005;39:2867-2879. https://doi.org/10.1021/es048851k
  130. Hernandez R. Integration of zero-valent metals and chemical oxidation for the destruction of 2,4,6 trinitrotoluene within aqueous matrices [dissertation]. Mississippi: Mississippi State University; 2002.
  131. Balasubramaniam R, Ramesh Kumar AV, Dillmann P. Characterization of rust on ancient Indian iron. Curr. Sci. 2003;85:1546-1555.
  132. Cornell RM, Schwertmann U. The iron oxides structure, properties, reactions, occurrences, and uses. 2nd ed. Weinheim: Wiley-VCH; 2003. p. 664.
  133. Brown GE, Henrich VE, Casey WH, et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 1998;99:77-174.
  134. Johnson TL, Fish W, Gorby YA, Tratnyek PG. Degradation of carbon tetrachloride by iron metal: complexation effects on the oxide surface. J. Contam. Hydrol. 1998;29:379-398. https://doi.org/10.1016/S0169-7722(97)00063-6
  135. Ritter K, Odziemkowski MS, Gillham RW. An in situ study of the role of surface films on granular iron in the permeable iron wall technology. J. Contam. Hydrol. 2002;55:87-111. https://doi.org/10.1016/S0169-7722(01)00187-5
  136. Helland BR, Alvarez PJ, Schnoor JL. Reductive dechlorination of carbon tetrachloride with elemental iron. J. Hazard. Mater. 1995;41:205-216. https://doi.org/10.1016/0304-3894(94)00111-S
  137. Hansen HC, Koch CB, Nancke-Krogh H, Borggaard OK, Sorensen J. Abiotic nitrate reduction to ammonium: key role of green rust. Environ. Sci. Technol. 1996;30:2053-2056. https://doi.org/10.1021/es950844w
  138. Liu CC, Tseng DH, Wang CY. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron. J. Hazard. Mater. 2006;136:706-713. https://doi.org/10.1016/j.jhazmat.2005.12.045
  139. Davenport AJ, Oblonsky LJ, Ryan MP, Toney MF. The structure of the passive film that forms on iron in aqueous environments. J. Electrochem. Soc. 2000;147:2162-2173. https://doi.org/10.1149/1.1393502
  140. Farrell J, Melitas N, Kason M, Li T. Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environ. Sci. Technol. 2000;34:2549-2556. https://doi.org/10.1021/es991135b
  141. Myneni SC, Tokunaga TK, Brown GE. Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science 1997;278:1106-1109. https://doi.org/10.1126/science.278.5340.1106
  142. Benali O, Abdelmoula M, Refait P, Genin JM. Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochim. Cosmochim. Acta 2001;65:1715-1726. https://doi.org/10.1016/S0016-7037(01)00556-7
  143. Danielsen KM, Hayes KF. pH dependence of carbon tetrachloride reductive dechlorination by magnetite. Environ. Sci. Technol. 2004;38:4745-4752. https://doi.org/10.1021/es0496874
  144. Vikesland PJ, Heathcock AM, Rebodos RL, Makus KE. Particle size and aggregation effects on magnetite reactivity toward carbon tetrachloride. Environ. Sci. Technol. 2007;41:5277-5283. https://doi.org/10.1021/es062082i
  145. Xue X, Hanna K, Abdelmoula M, Deng N. Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations. Appl. Catal. B. Environ. 2009;89:432-440. https://doi.org/10.1016/j.apcatb.2008.12.024
  146. Amonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ. Sci. Technol. 2000;34:4606-4613. https://doi.org/10.1021/es9913582
  147. Junyapoon S. Use of zero-valent iron for wastewater treatment. KMITL Sci. Tech. J. 2005;5:587-595.
  148. Ghauch A, Tuqan A. Reductive destruction and decontamination of aqueous solutions of chlorinated antimicrobial agent using bimetallic systems. J. Hazard. Mater. 2009;164:665-674. https://doi.org/10.1016/j.jhazmat.2008.08.048
  149. Liu T, Tsang DC, Lo IM. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environ. Sci. Technol. 2008;42:2092-2098. https://doi.org/10.1021/es072059c
  150. Tsang DC, Graham NJ, Lo IM. Humic acid aggregation in zero-valent iron systems and its effects on trichloroethylene removal. Chemosphere 2009;75:1338-1343. https://doi.org/10.1016/j.chemosphere.2009.02.058
  151. Riley RG, Zachara JM. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. Washington, DC: U.S. Department of Energy; 1992. p. 77.
  152. Mackenzie PD, Horney DP, Sivavec TM. Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mater. 1999;68:1-17. https://doi.org/10.1016/S0304-3894(99)00029-1
  153. Devlin JF, Allin KO. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environ. Sci. Technol. 2005;39:1868-1874. https://doi.org/10.1021/es040413q
  154. D'Andrea P, Lai KC, Kjeldsen P, Lo IM. Effect of groundwater inorganics on the reductive dechlorination of TCE by zero-valent iron. Water Air Soil Pollut. 2005;162:401-420. https://doi.org/10.1007/s11270-005-7420-7

Cited by

  1. vol.49, pp.2, 2015, https://doi.org/10.1021/es504375t
  2. Synthesis and use of bimetals and bimetal oxides in contaminants removal from water: a review vol.5, pp.104, 2015, https://doi.org/10.1039/C5RA13067K
  3. Effect of Coupling Zero-Valent Iron Side Filters on the Performance of Bioreactors Fed with a High Concentration of Perchloroethylene vol.142, pp.11, 2016, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001093
  4. Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation vol.23, pp.18, 2016, https://doi.org/10.1007/s11356-016-6626-0
  5. Noncovalent and covalent immobilization of oxygenase on single-walled carbon nanotube for enzymatic decomposition of aromatic hydrocarbon intermediates vol.23, pp.2, 2016, https://doi.org/10.1007/s11356-015-4168-5
  6. Catalytic hydrodechlorination reaction of chlorophenols by Pd nanoparticles supported on graphene vol.42, pp.1, 2016, https://doi.org/10.1007/s11164-015-2368-8
  7. nanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate vol.6, pp.20, 2016, https://doi.org/10.1039/C6CY01479H
  8. Co-contamination of water with chlorinated hydrocarbons and heavy metals: challenges and current bioremediation strategies vol.10, pp.2, 2011, https://doi.org/10.1007/s13762-012-0122-y
  9. Enhanced removal of dissolved aniline from water under combined system of nano zero-valent iron and Pseudomonas putida vol.2, pp.2, 2016, https://doi.org/10.1007/s40899-016-0045-8
  10. Efficient Electrochemical Reduction of Nitrobenzene by Defect-Engineered TiO2–x Single Crystals vol.50, pp.10, 2011, https://doi.org/10.1021/acs.est.6b00730
  11. Reductive approach in the degradation of phenols with zero‐valent iron in aqueous media vol.38, pp.2, 2011, https://doi.org/10.1002/ep.13001
  12. Effect of O2, Ni0 coatings, and iron oxide phases on pentachlorophenol dechlorination by zero-valent iron vol.26, pp.27, 2011, https://doi.org/10.1007/s11356-019-06009-w
  13. The removal of 2,4,6-trichlorophenol in water by Ni/Fe nanoparticles vol.194, pp.None, 2011, https://doi.org/10.1051/e3sconf/202019404028
  14. Bifacial Multilayer Graphene Float Transfer vol.30, pp.49, 2011, https://doi.org/10.1002/adfm.202005103
  15. Green Synthesis of Kaolin-Supported Nanoscale Zero-Valent Iron Using Ruellia tuberosa Leaf Extract for Effective Decolorization of Azo Dye Reactive Black 5 vol.46, pp.1, 2011, https://doi.org/10.1007/s13369-020-04831-w
  16. The sequestration of aqueous Cr(VI) by zero valent iron-based materials: From synthesis to practical application vol.312, pp.None, 2011, https://doi.org/10.1016/j.jclepro.2021.127678
  17. Oxidative removal of 4-chloro-hydroxybenzene using catalyzed S2O82− with Fe2+ under UV-LED irradiation vol.5, pp.None, 2021, https://doi.org/10.1016/j.clet.2021.100337