DOI QR코드

DOI QR Code

Pretreatment in Reverse Osmosis Seawater Desalination: A Short Review

  • Valavala, Ramesh (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Sohn, Jin-Sik (Department of Civil and Environmental Engineering, Kookmin University) ;
  • Han, Ji-Hee (Department of Civil and Environmental Engineering, Kookmin University) ;
  • Her, Nam-Guk (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon) ;
  • Yoon, Yeo-Min (Department of Civil and Environmental Engineering, University of South Carolina)
  • Received : 2010.12.30
  • Accepted : 2011.11.23
  • Published : 2011.12.31

Abstract

Reverse osmosis (RO) technology has developed over the past 40 years to control a 44% market share in the world desalting production capacity and an 80% share in the total number of desalination plants installed worldwide. The application of conventional and low-pressure membrane pretreatment processes to seawater RO (SWRO) desalination has undergone accelerated development over the past decade. Reliable pretreatment techniques are required for the successful operation of SWRO processes, since a major issue is membrane fouling associated with particulate matter/colloids, organic/inorganic compounds, and biological growth. While conventional pretreatment processes such as coagulation and granular media filtration have been widely used for SWRO, there has been an increased tendency toward the use of ultrafiltration/microfiltration (UF/MF) instead of conventional treatment techniques. The literature shows that both the conventional and the UF/MF membrane pretreatment processes have different advantages and disadvantages. This review suggests that, depending on the feed water quality conditions, the suitable integration of multiple pretreatment processes may be considered valid since this would utilize the benefits of each separate pretreatment.

Keywords

References

  1. Service RF. Desalination freshens up. Science 2006;313:1088-1090. https://doi.org/10.1126/science.313.5790.1088
  2. Sanza MA, Bonnelyea V, Cremerb G. Fujairah reverse osmosis plant: 2 years of operation. Desalination 2007;203:91-99. https://doi.org/10.1016/j.desal.2006.03.526
  3. Sauvet-Goichon B. Ashkelon desalination plant - a successful challenge. Desalination 2007;203:75-81. https://doi.org/10.1016/j.desal.2006.03.525
  4. Prihasto N, Liu QF, Kim SH. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination 2009;249:308-316. https://doi.org/10.1016/j.desal.2008.09.010
  5. Gleick PH. The world's water, 2006-2007: the biennial report on freshwater resources. Washington, DC: Island Press; 2006.
  6. Fritzmann C, Lowenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007;216:1-76. https://doi.org/10.1016/j.desal.2006.12.009
  7. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 2009;43:2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
  8. Brehant A, Bonnelye V, Perez M. Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination. Desalination 2002;144:353-360. https://doi.org/10.1016/S0011-9164(02)00343-0
  9. Reverter JA, Talo S, Alday J. Las Palmas III - the success story of brine staging. Desalination 2001;138:207-217. https://doi.org/10.1016/S0011-9164(01)00266-1
  10. Reverberi F, Gorenflo A. Three year operational experience of a spiral-wound SWRO system with a high fouling potential feed water. Desalination 2007;203:100-106. https://doi.org/10.1016/j.desal.2006.05.005
  11. Tran T, Bolto B, Gray S, Hoang M, Ostarcevic E. An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant. Water Res. 2007;41:3915-3923. https://doi.org/10.1016/j.watres.2007.06.008
  12. Magara Y, Kawasaki M, Sekino M, Yamamura H. Development of reverse osmosis membrane seawater desalination in Japan. Water Sci. Technol. 2000;41:1-8.
  13. Her N, Amy G, Chung J, Yoon J, Yoon Y. Characterizing dissolved organic matter and evaluating associated nanofiltration membrane fouling. Chemosphere 2008;70:495-502. https://doi.org/10.1016/j.chemosphere.2007.06.025
  14. Her N, Amy G, Jarusutthirak C. Seasonal variations of nano-filtration (NF) foulants: identification and control. Desalination 2000;132:143-160. https://doi.org/10.1016/S0011-9164(00)00143-0
  15. Yoon J, Yoon Y, Amy G, Her N. Determination of perchlorate rejection and associated inorganic fouling (scaling) for reverse osmosis and nanofiltration membranes under various operating conditions. J. Environ. Eng. 2005;131:726-733. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:5(726)
  16. Lee H, Amy G, Cho J, Yoon Y, Moon SH, Kim IS. Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Res. 2001;35:3301-3308. https://doi.org/10.1016/S0043-1354(01)00063-X
  17. Abdessemed D, Nezzal G. Coupling softening - ultrafiltration like pretreatment of sea water case study of the Corso plant desalination (Algiers). Desalination 2008;221:107-113. https://doi.org/10.1016/j.desal.2007.01.072
  18. Bonnelye V, Sanz MA, Durand JP, Plasse L, Gueguen F, Mazounie P. Reverse osmosis on open intake seawater: pretreatment strategy. Desalination 2004;167:191-200. https://doi.org/10.1016/j.desal.2004.06.128
  19. Burashid K, Hussain AR. Seawater RO plant operation and maintenance experience: Addur desalination plant operation assessment. Desalination 2004;165:11-22.
  20. Chua KT, Hawlader MN, Malek A. Pretreatment of seawater: results of pilot trials in Singapore. Desalination 2003;159:225-243. https://doi.org/10.1016/S0011-9164(03)90075-0
  21. Ebrahim S, Abdel-Jawad M, Bou-Hamad S, Safar M. Fifteen years of R&D program in seawater desalination at KISR Part I. Pretreatment technologies for RO systems. Desalination 2001;135:141-153. https://doi.org/10.1016/S0011-9164(01)00146-1
  22. Glueckstern P, Priel M, Wilf M. Field evaluation of capillary UF technology as a pretreatment for large seawater RO systems. Desalination 2002;147:55-62. https://doi.org/10.1016/S0011-9164(02)00576-3
  23. Pervov AG, Andrianov AP, Efremov RV, Desyatov AV, Baranov AE. A new solution for the Caspian Sea desalination: lowpressure membranes. Desalination 2003;157:377-384. https://doi.org/10.1016/S0011-9164(03)00420-X
  24. Van Hoof SC, Hashim A, Kordes AJ. The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications. Desalination 1999;124:231-242. https://doi.org/10.1016/S0011-9164(99)00108-3
  25. Xu J, Ruan G, Chu X, Yao Y, Su B, Gao C. A pilot study of UF pretreatment without any chemicals for SWRO desalination in China. Desalination 2007;207:216-226. https://doi.org/10.1016/j.desal.2006.08.006
  26. Sinha S, Yoon Y, Amy G, Yoon J. Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes. Chemosphere 2004;57:1115-1122. https://doi.org/10.1016/j.chemosphere.2004.08.012
  27. Khawaji AD, Kutubkhanah IK, Wie JM. A 13.3 MGD seawater RO desalination plant for Yanbu Industrial City. Desalination 2007;203:176-188. https://doi.org/10.1016/j.desal.2006.02.018
  28. Bache DH, Gregory R. Flocs and separation processes in drinking water treatment: a review. J. Water Supply Res. Technol. AQUA 2010;59:16-30. https://doi.org/10.2166/aqua.2010.028
  29. Wilf M, Bartels C. Integrated membrane desalination systems--current status and projected development [Internet]. 2006. Available from: http://www.membranes.com/docs/papers/New%20Folder/Abstract%20for%20Tianjin%20-%20Hydranautics.pdf.
  30. Choi KY, Dempsey BA. In-line coagulation with low-pressure membrane filtration. Water Res. 2004;38:4271-4281. https://doi.org/10.1016/j.watres.2004.08.006
  31. Gabelich CJ, Yun TI, Coffey BM, Suffet IH. Effects of aluminum sulfate and ferric chloride coagulant residuals on polyamide membrane performance. Desalination 2002;150:15-30. https://doi.org/10.1016/S0011-9164(02)00926-8
  32. Gabelich CJ, Williams MD, Rahardianto A, Franklin JC, Cohen Y. High-recovery reverse osmosis desalination using intermediate chemical demineralization. J. Membr. Sci. 2007;301:131-141. https://doi.org/10.1016/j.memsci.2007.06.007
  33. Rahardianto A, Gao J, Gabelich CJ, Williams MD, Cohen Y. High recovery membrane desalting of low-salinity brackish water: Integration of accelerated precipitation softening with membrane RO. J. Membr. Sci. 2007;289:123-137. https://doi.org/10.1016/j.memsci.2006.11.043
  34. Nadav N, Priel M, Glueckstern P. Boron removal from the permeate of a large SWRO plant in Eilat. Desalination 2005;185:121-129. https://doi.org/10.1016/j.desal.2005.03.075
  35. Gaid K, Treal Y. Le dessalement des eaux par osmose inverse: l'experience de Veolia Water. Desalination 2007;203:1-14. https://doi.org/10.1016/j.desal.2006.03.523
  36. Glueckstern P, Priel M. Optimization of boron removal in old and new SWRO systems. Desalination 2003;156:219-228. https://doi.org/10.1016/S0011-9164(03)00344-8
  37. Koseoglu H, Kabay N, Yuksel M, Sarp S, Arar O, Kitis M. Boron removal from seawater using high rejection SWRO membranes - impact of pH, feed concentration, pressure, and cross-flow velocity. Desalination 2008;227:253-263. https://doi.org/10.1016/j.desal.2007.06.029
  38. Mane PP, Park PK, Hyung H, Brown JC, Kim JH. Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes. J. Membr. Sci. 2009;338:119-127. https://doi.org/10.1016/j.memsci.2009.04.014
  39. Taniguchi M, Fusaoka Y, Nishikawa T, Kurihara M. Boron removal in RO seawater desalination. Desalination 2004;167:419-426. https://doi.org/10.1016/j.desal.2004.06.157
  40. Huang H, Schwab K, Jacangelo JG. Pretreatment for low pressure membranes in water treatment: a review. Environ. Sci. Technol. 2009;43:3011-3019. https://doi.org/10.1021/es802473r
  41. Munoz Elguera A, Perez Baez SO. Development of the most adequate pre-treatment for high capacity seawater desalination plants with open intake. Desalination 2005;184:173-183. https://doi.org/10.1016/j.desal.2005.04.033
  42. O'Melia CR. Aquasols: the behavior of small particles in aquatic systems. Environ. Sci. Technol. 1980;14:1052-1060. https://doi.org/10.1021/es60169a601
  43. Water desalination. Technical manual TM 5-813-8. Washington, DC: U.S. Department of the Army; 1986.
  44. Peleka EN, Matis KA. Application of flotation as a pretreatment process during desalination. Desalination 2008;222:1-8. https://doi.org/10.1016/j.desal.2007.04.067
  45. Rubio J, Souza ML, Smith RW. Overview of flotation as a wastewater treatment technique. Miner. Eng. 2002;15:139-155. https://doi.org/10.1016/S0892-6875(01)00216-3
  46. Vedavyasan CV. Pretreatment trends - an overview. Desalination 2007;203:296-299. https://doi.org/10.1016/j.desal.2006.04.012
  47. Pearce GK. The case for UF/MF pretreatment to RO in seawater applications. Desalination 2007;203:286-295. https://doi.org/10.1016/j.desal.2006.04.011
  48. Choi YH, Kweon JH, Kim DI, Lee S. Evaluation of various pretreatment for particle and inorganic fouling control on performance of SWRO. Desalination 2009;247:137-147. https://doi.org/10.1016/j.desal.2008.12.019
  49. Hamed OA. Overview of hybrid desalination systems - current status and future prospects. Desalination 2005;186:207-214. https://doi.org/10.1016/j.desal.2005.03.095
  50. Van der Bruggen B, Vandecasteele C. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 2002;143:207-218. https://doi.org/10.1016/S0011-9164(02)00259-X
  51. Kamp PC, Kruithof JC, Folmer HC. UF/RO treatment plant Heemskerk: from challenge to full scale application. Desalination 2000;131:27-35. https://doi.org/10.1016/S0011-9164(00)90003-1
  52. Pearce GK. UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs. Desalination 2008;222:66-73. https://doi.org/10.1016/j.desal.2007.05.029
  53. Teuler A, Glucina K, Laine JM. Assessment of UF pretreatment prior RO membranes for seawater desalination. Desalination 1999;125:89-96. https://doi.org/10.1016/S0011-9164(99)00126-5
  54. Kimura K, Maeda T, Yamamura H, Watanabe Y. Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water. J. Membr. Sci. 2008;320:356-362. https://doi.org/10.1016/j.memsci.2008.04.018
  55. Tran T, Gray S, Naughton R, Bolto B. Polysilicato-iron for improved NOM removal and membrane performance. J. Membr. Sci. 2006;280:560-571. https://doi.org/10.1016/j.memsci.2006.02.013
  56. Wang J, Guan J, Santiwong SR, Waite TD. Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling. J. Membr. Sci. 2008;321:132-138. https://doi.org/10.1016/j.memsci.2008.04.008
  57. Howe KJ, Marwah A, Chiu KP, Adham SS. Effect of coagulation on the size of MF and UF membrane foulants. Environ. Sci. Technol. 2006;40:7908-7913. https://doi.org/10.1021/es0616480
  58. Schafer AI, Fane AG, Waite TD. Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter. Water Res. 2001;35:1509-1517. https://doi.org/10.1016/S0043-1354(00)00418-8
  59. Lee J, Walker HW. Effect of process variables and natural organic matter on removal of microcystin-LR by PAC - UF. Environ. Sci. Technol. 2006;40:7336-7342. https://doi.org/10.1021/es060352r
  60. Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A, $17\beta$-estradiol, and $17\alpha$-ethynyl estradiol on powdered activated carbon. Water Res. 2003;37:3530-3537. https://doi.org/10.1016/S0043-1354(03)00239-2
  61. Najm IN, Snoeyink VL, Lykins BW, Adams JQ. Using powdered activated carbon - a critical review. J. Am. Water Works Assoc. 1991;83:65-76.
  62. Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005;39:6649-6663. https://doi.org/10.1021/es0484799
  63. Yoon Y, Westerhoff P, Snyder SA. Adsorption of 3H-labeled $17-\beta$ estradiol on powdered activated carbon. Water Air Soil Pollut. 2005;166:343-351. https://doi.org/10.1007/s11270-005-7274-z
  64. Tien VN, Chaudhary DS, Ngo HH, Vigneswaran S. Arsenic in water: concerns and treatment technologies. J. Ind. Eng. Chem. 2004;10:337-348.
  65. Tsujimoto W, Kimura H, Izu T, Irie T. Membrane filtration and pre-treatment by GAC. Desalination 1998;119:323-326. https://doi.org/10.1016/S0011-9164(98)00176-3
  66. Yuasa A. Drinking water production by coagulation-microfiltration and adsorption-ultrafiltration. Water Sci. Technol. 1998;37:135-146.
  67. Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008;42:5843-5859. https://doi.org/10.1021/es8006904
  68. Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 2008;42:9005-9013. https://doi.org/10.1021/es801777n
  69. Upadhyayula VK, Deng S, Mitchell MC, Smith GB. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ. 2009;408:1-13. https://doi.org/10.1016/j.scitotenv.2009.09.027
  70. Crittenden J, Montgomery Watson Harza. Water treatment principles and design. 2nd ed. Hoboken: John Wiley; 2005. p. 75-90.
  71. Vos G, Brekvoort Y, Oosterom HA, Nederlof MM. Treatment of canal water with ultrafiltration to produce industrial and household water. Desalination 1998;118:297-303. https://doi.org/10.1016/S0011-9164(98)00151-9
  72. Plummer JD, Edzwald JK. Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation. J. Water Supply Res. Technol. AQUA 2002;51:307-318.
  73. Wilczak A, Howe EW, Aieta EM, Lee RG. How preoxidation affects particle removal during clarification and filtration. J. Am. Water Works Assoc. 1992;84:85-94.
  74. Hasan Al-Sheikh AH. Seawater reverse osmosis pretreatment with an emphasis on the Jeddah Plant operation experience. Desalination 1997;110:183-192. https://doi.org/10.1016/S0011-9164(97)00096-9
  75. Lorain O, Hersant B, Persin F, Grasmick A, Brunard N, Espenan JM. Ultrafiltration membrane pre-treatment benefits for reverse osmosis process in seawater desalting. Quantification in terms of capital investment cost and operating cost reduction. Desalination 2007;203:277-285. https://doi.org/10.1016/j.desal.2006.02.022

Cited by

  1. Kinetic Study of Seawater Reverse Osmosis Membrane Fouling vol.47, pp.19, 2013, https://doi.org/10.1021/es402138e
  2. Costs for water supply, treatment, end-use and reclamation vol.51, pp.1-3, 2013, https://doi.org/10.1080/19443994.2012.708996
  3. Removal of fluoride and total dissolved solids from coalbed methane produced water with a movable ultra-low pressure reverse osmosis system vol.51, pp.22-24, 2013, https://doi.org/10.1080/19443994.2012.742853
  4. Electrodialysis for desalination of brackish groundwater in coastal areas of Korea vol.51, pp.31-33, 2013, https://doi.org/10.1080/19443994.2013.780800
  5. Precipitation softening: a pretreatment process for seawater desalination vol.21, pp.4, 2014, https://doi.org/10.1007/s11356-013-2237-1
  6. Influence of microbubble in physical cleaning of MF membrane process for wastewater reuse vol.22, pp.11, 2015, https://doi.org/10.1007/s11356-014-3928-y
  7. Can desalinated seawater contribute to iodine-deficiency disorders? An observation and hypothesis vol.19, pp.15, 2016, https://doi.org/10.1017/S1368980016000951
  8. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination vol.55, pp.3, 2017, https://doi.org/10.1111/gwat.12476
  9. The Performance and Fouling Control of Submerged Hollow Fiber (HF) Systems: A Review vol.7, pp.8, 2017, https://doi.org/10.3390/app7080765
  10. Removal of fouling species from brackish water reverse osmosis reject stream pp.1479-487X, 2017, https://doi.org/10.1080/09593330.2017.1311946
  11. Numerical modelling of a forced gradient tracer test undertaken under non-ideal conditions vol.49, pp.2, 2016, https://doi.org/10.1144/qjegh2015-100
  12. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications pp.1998-0000, 2019, https://doi.org/10.1007/s12274-018-2225-3
  13. ASTM Standard Modified Fouling Index for Seawater Reverse Osmosis Desalination Process: Status, Limitations, and Perspectives pp.1542-2127, 2020, https://doi.org/10.1080/15422119.2018.1515777
  14. Application of chemically enhanced backwash coping with algal inflow in desalination pretreatment using ceramic membrane vol.32, pp.2, 2018, https://doi.org/10.11001/jksww.2018.32.2.097
  15. Rapid and selective lithium recovery from desalination brine using an electrochemical system pp.2050-7895, 2019, https://doi.org/10.1039/C8EM00498F
  16. Seawater ultrafiltration: role of particles on organic rejections and permeate fluxes vol.34, pp.17, 2013, https://doi.org/10.1080/09593330.2013.777127
  17. Scaling predictions in seawater reverse osmosis desalination vol.5, pp.3, 2011, https://doi.org/10.12989/mwt.2014.5.3.221
  18. Biological support media influence the bacterial biofouling community in reverse osmosis water reclamation demonstration plants vol.31, pp.2, 2011, https://doi.org/10.1080/08927014.2015.1012640
  19. Comparison between oily and coal seam gas produced water with respect to quantity, characteristics and treatment technologies: a review vol.54, pp.7, 2011, https://doi.org/10.1080/19443994.2014.893541
  20. Enhanced boron removal using polyol compounds in seawater reverse osmosis processes vol.57, pp.17, 2011, https://doi.org/10.1080/19443994.2015.1038596
  21. An optimal design approach of gas hydrate and reverse osmosis hybrid system for seawater desalination vol.57, pp.19, 2011, https://doi.org/10.1080/19443994.2015.1049405
  22. Management and dewatering of brines extracted from geologic carbon storage sites vol.63, pp.None, 2011, https://doi.org/10.1016/j.ijggc.2017.03.032
  23. Sodium Hydroxide Production from Seawater Desalination Brine: Process Design and Energy Efficiency vol.52, pp.10, 2011, https://doi.org/10.1021/acs.est.8b01195
  24. Assessing the feasibility of applying Reverse Osmosis technology at MN Port vol.107, pp.None, 2011, https://doi.org/10.1051/e3sconf/201910701002
  25. Application Study of URCⓇ-A Process as a Feedwater Controlling Step of UF Pretreatment in SWRO Process vol.41, pp.3, 2011, https://doi.org/10.4491/ksee.2019.41.3.166
  26. Applications of flat sheet ceramic membrane for surface water and seawater treatments - introduction of performance in large-scale drinking water plant and seawater pretreatment pilot system in Singap vol.14, pp.2, 2011, https://doi.org/10.2166/wpt.2019.013
  27. Brackish Water Desalination: An Effective Pretreatment Process for Reverse Osmosis Systems vol.230, pp.10, 2011, https://doi.org/10.1007/s11270-019-4299-2
  28. SWRO 전처리 공정에 적용된 DABF 내 Ball Media Filter 성능 평가 vol.35, pp.6, 2011, https://doi.org/10.15681/kswe.2019.35.6.567
  29. 해수담수화 전처리공정 비교 및 적용 방법 vol.33, pp.6, 2019, https://doi.org/10.11001/jksww.2019.33.6.437
  30. Characterization and removal of biofouling from reverse osmosis membranes (ROMs) from a desalination plant in Northern Chile, using Alteromonas sp. Ni1-LEM supernatant vol.36, pp.5, 2011, https://doi.org/10.1080/08927014.2020.1776268
  31. Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-of-the-Art and Performance Analysis vol.10, pp.6, 2011, https://doi.org/10.3390/membranes10060131
  32. Solute displacement in the aqueous phase of water-NaCl-organic ternary mixtures relevant to solvent-driven water treatment vol.10, pp.49, 2011, https://doi.org/10.1039/d0ra06361d
  33. Removal of Bacteria and Organic Carbon by an Integrated Ultrafiltration—Nanofiltration Desalination Pilot Plant vol.10, pp.9, 2011, https://doi.org/10.3390/membranes10090223
  34. Synthesis and characterization of new proton exchange membrane deriving from sulfonated polyether sulfone using ionic crosslinking for electrodialysis applications vol.60, pp.12, 2011, https://doi.org/10.1002/pen.25543
  35. Assessing Pretreatment Effectiveness for Particulate, Organic and Biological Fouling in a Full-Scale SWRO Desalination Plant vol.11, pp.3, 2011, https://doi.org/10.3390/membranes11030167
  36. Progress and Perspectives of Desalination in China vol.11, pp.3, 2011, https://doi.org/10.3390/membranes11030206
  37. Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies vol.765, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2020.142721
  38. A review of membrane crystallization, forward osmosis and membrane capacitive deionization for liquid mining vol.168, pp.None, 2021, https://doi.org/10.1016/j.resconrec.2020.105273
  39. An integrated approach to enhance the desalination process: coupling reverse osmosis process with microbial desalination cells in the UAE vol.21, pp.3, 2011, https://doi.org/10.2166/ws.2020.375
  40. Crosslinked electrospun composite membranes of poly(vinyl alcohol) and poly(vinyl chloride): tunable mechanical properties, porosity and performance vol.70, pp.10, 2021, https://doi.org/10.1002/pi.6224
  41. Reverse Osmosis Concentrate: Physicochemical Characteristics, Environmental Impact, and Technologies vol.11, pp.10, 2011, https://doi.org/10.3390/membranes11100753
  42. Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources vol.282, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.130881
  43. Evaluation of Natural Montmorillonite Clay for Removal of Cd2+ from Aqueous Solution in a Batch Adsorption System vol.95, pp.13, 2011, https://doi.org/10.1134/s0036024421130045
  44. Fouling, performance and cost analysis of membrane-based water desalination technologies: A critical review vol.301, pp.None, 2011, https://doi.org/10.1016/j.jenvman.2021.113922
  45. Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications vol.9, pp.1, 2011, https://doi.org/10.3390/separations9010001
  46. Characterization of fouling for a full-scale seawater reverse osmosis plant on the Mediterranean sea: membrane autopsy and chemical cleaning efficiency vol.16, pp.None, 2022, https://doi.org/10.1016/j.gsd.2021.100704