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Abstract

The classical two-period, two-sequence crossover design is no longer sufficient to assess various demands in

a bioequivalence study. For instance, to estimate the within-subject and between-subject variances of test

and reference formulations separately, it is necessary to use a replicate design in which each subject receives

at least the reference formulation in two periods. Several designs were studied to satisfy the demands. It is

provided a unified Bayesian approach applicable to those study designs. The benefit of the method in the

bioequivalence study is discussed.
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1. Introduction

Bioequivalence studies are generally conducted through a comparison of the in vivo rate and extent

of drug absorption of a test drug and an innovative drug. In a standard in vivo bioequivalence

study, a conventional two-period, two-sequence randomized crossover design has been widely used.

In this 2 × 2 crossover design, study subjects receive a single dose of both test and innovative

drugs on separate occasions through random assignment to the two possible sequences of drug

administration. The 2 × 2 crossover design enables to assess various statistical objectives as well

as the average bioequivalence(ABE). See Hauschke et al. (2007) for further detail.

In 1997, the US Food and Drug Administration(FDA) published a draft guidance to propose two new

concepts of bioequivalence: population bioequivalence(PBE) introduced by Anderson and Hauck

(1990) and individual bioequivalence(IBE) introduced by Anderson and Hauck (1990). This draft

guidance recommended that the PBE or IBE should be used to assess bioequivalence instead of the

ABE. This recommendation caused a series of controversial debate, which ended up by omitting

the PBE and IBE concepts from the FDA guidance in 2003. However, many statistical methods

for PBE and IBE were proposed during the debate (Hyslop et al., 2000; Carrasco and Jover, 2003;

Chow et al., 2003; Hsuan and Reeve, 2003; Oh et al., 2003).

These two criteria compare the population means of the reference and test formulation as well as

the variances. In particular, the IBE criterion requires the estimation of the variance of subject-by-

formulation interaction. Since we cannot estimate the within-subject and between-subject variances
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of each test and innovative reference formulation separately under the 2×2 design, it is not sufficient

to assess the IBE based on the criterion recommended by the Food and Drug Administration (1997).

For the assessment, it is necessary to use a replicate design where each subject receives the reference

formulation at least two periods. The FDA recommended a four-period, two-sequence, randomized

crossover design. However, some authors studied other designs instead of the recommended design.

For example, Shao et al. (2002) considered the 2 × 3 design, while Jung et al. (2010) investigated

the 3× 2 design to assess the IBE.

The current FDA bioequivalence guidance does not require a demonstration of the PBE or IBE.

However, even if we assume the normality of pharmacokinetic characteristic, it is not appropriate

that the decision on bioequivalence of the two formulations is solely based on a comparison of the

means. We should somehow investigate the between-subject variance or subject-by-formulation

interactions. For this purpose, the classical two-period, two-sequence crossover design could no

longer be a standard study design. In addition, there are situations in which more than two

formulations are needed. For instance, dose linearity study typically needs to test more than two

formulations. Thus, to achieve various objectives in bioequivalence studies, we should consider a

general crossover design. Note that the design can be expressed as a linear mixed model and the

Bayesian theory is well-established in the linear mixed model with significant literature published on

the Bayesian treatment for the model. For example, Lee and Lee (2002) provided Bayesian analysis

in a quite general multivariate linear mixed model using Gibbs sampling. Note that the Bayesian

approach has several advantages in that the posterior distribution of model parameters can be

estimated reliably by a Markov Chain Monte Carlo method regardless of the sample size. Therefore,

all inferences in bioequivalence study can be easily established. However, the Frequentist’s method,

proposed by Hyslop et al. (2000) and recommended by the FDA, tries to find the distribution of

estimates by using the bootstrap method of which the efficiency may depend on sample size.

There were also researches in regards to the Bayesian approach in bioequivalence study. See, Best

et al. (1995), Lunn et al. (2002) and Oh et al. (2003). However, most studies provided a conceptual

algorithm that may be dependent on the study design. The method described in this paper is

somewhat independent of the study design.

2. Gibbs Sampler in a Mixed Effect Linear Model

In this section, we will briefly review a noninformative Bayesian approach for a mixed effect linear

model which can be written as:

y = Xβ +

L∑
i=1

Ziθi + ϵ, (2.1)

where y is a N × 1 vector of observations; X is a full column rank design matrix of independent

variables; β is the p × 1 vector of parameters for the fixed effects; Zi is the design matrix of

predictor variables for random effects θi; θi is the m × 1 vector of random effects; ϵ is the error

vector. Further, ϵ ∼ N(0,
∑m

h=1 σ
2
hDh) where Dh’s are known diagonal matrices of 0’s and 1’s such

that
∑m

h=1 Dh = I, a N ×N identity matrix, and θ = (θ′
1, . . . , θ

′
L)

′ and ϵ are independent.

For (2.1), a hierarchical Bayesian model can be set up as:

(I) y|β,θ,σ ∼ N(Xβ +
∑L

i=1 Ziθi,Σ), where σ = (σ1, . . . , σm)′ and Σ =
∑m

h=1 σ
2
hDh.

(II) β,θ and σ have a certain joint prior distribution, proper or improper.
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In the absence of prior information, the uniform prior is customarily chosen for the fixed effects

β (e.g., Zeger and Karim, 1991; Hobert and Casella, 1996; Natarajan and Kass, 2000; Kass and

Natarajan, 2006). For the random effects, N(0,Ω) is chosen by default, because frequentist thought

that θi’s are independently and identically distributed normal random vectors with a mean 0 and

variance-covariance matrix Ω. There is no reason to consider other priors: however, this prior

requires a second stage prior for Ω.

The two frequently used noninformative priors are well-known Jeffrey’s prior, π(Ω) ∝ |Ω|−(m+1)/2

(Tiao and Tan, 1965; Wang et al., 1994), and a uniform prior on Ω. The first prior has the advantage

of simplifying the full conditional distribution required by the Gibbs sampler: however, it can be

shown that the prior leads to an improper joint posterior distribution. Note that Gibbs chains

corresponding to improper posteriors are quite ill-behaved, but the Gibbs output does not inform

the user that the posterior is improper (Hobert and Casella, 1996). Thus, one must be careful

in choosing the improper prior distribution. On the other hand, the uniform prior can be quite

informative for a small dataset (Daniels and Kass, 1999), which is a usual case in the bioequivalence

study.

An easy way to avoid improper posterior distributions is to use a conjugate prior which is an

inverse-Wishart distribution. It is commonly used as a noninformative proper prior with m degrees

of freedom and some fixed scale matrix Ψ. The scale matrix can be chosen as the maximum

likelihood estimator (Daniels and Kass, 1999). We can also choose the scale matrix given in Kass

and Natarajan (2006). Finally, we refer to Gelman (2006) for the prior of σ. That is, we assign a

uniform prior distribution. Consequently, we will employ following prior distributions:

(II*)

1. β and θi|Ω, i = 1, . . . , L are independent, and p(β) ∝ 1 and p(θi|Ω)
iid∼ N(0,Ω),

2. p(Ω) ∝ |Ω|−(2m+1)/2 exp
[
−1/2 tr(ΨΩ−1)

]
,

3. p(σ) ∝ 1 or equivalently p(σ2
1 , . . . , σ

2
m) ∝

∏m
h=1 1/σh,

where tr(A) denotes the trace of a matrix A.

The Gibbs sampler consists of a set of full conditional posterior distributions of unknown parameters.

The posterior distributions can be obtained from the joint posterior distribution of parameters and

it can be obtained by the Bayes theorem,

p(β,θ,Ω,σ|y) ∝ p(y|β,θ,Ω,σ)p(β,θ,Ω,σ)
= p(y|β,θ,σ)p(β)p(θ|Ω)p(Ω)p(σ2

1 , . . . , σ
2
m). (2.2)

Among the five terms in (2.2), the first and the second terms are the only ones that are functions of

β. Thus, the full posterior distribution of β is proportional to the product of these two conditional

distributions,

p(β|θ,Ω,σ,y) ∝ p(y|β,θ,σ)p(β)

∝ exp

[
−1

2

(
y −Xβ −

L∑
i=1

Ziθi

)′

Σ−1

(
y −Xβ −

L∑
i=1

Ziθi

)]

∝ exp

[
−1

2

{
β′X′Σ−1Xβ − 2β′X′Σ−1

(
y −

L∑
i=1

Ziθi

)}]

∝ exp

[
−1

2

(
β − β̃

)′
X′Σ−1X

(
β − β̃

)]
,
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where β̃ = (X′Σ−1X)−1X′Σ−1(y −
∑L

i=1 Ziθi). This shows that the full posterior distribution of

β is a normal with mean β̃ and variance-covariance matrix (X′Σ−1X)−1. In particular, the full

posterior distribution of a subset of β is a normal distribution given in Lemma 2.1

Lemma 2.1. Suppose β′ = (β′
1,β

′
2). Then under model (I) and (II*), the full posterior distribution

of β1 is

β1|β2,θ,Ω,σ,y ∼ N

((
X′

1Σ
−1X1

)−1
X′

1Σ
−1

(
y −X2β2 −

L∑
i=1

Ziθi

)
,
(
X′

1Σ
−1X1

)−1

)
,

where X = (X1,X2) partitioned according to β1 and β2.

In what follows, we will use a minus subscript to delete an element or a vector from a matrix

appropriately. For instance, θ−j will denote the vector θ with the jth element θj being deleted.

The full posterior distribution of θj , j = 1, . . . , L is proportional to the product of p(y|β,θ,σ) and
p(θj |Ω),

p(θj |β,θ−j ,Ω,σ,y) ∝ p(y|β,θ,σ)p(θj |Ω)

∝ exp

[
−1

2

{(
y −Xβ +

L∑
i=1

Ziθi

)′

Σ−1

(
y −Xβ +

L∑
i=1

Ziθi

)
+ θ′

jΩ
−1θj

}]

∝ exp

[
−1

2

(
θj − θ̃j

)′ (
Z′

jΣ
−1Zj +Ω−1) (θj − θ̃j

)]
,

where θ̃j = (Z′
jΣ

−1Zj+Ω−1)−1Z′
jΣ

−1(y−Xβ−
∑

i ̸=j Ziθi). Again, the full posterior distribution

is a normal distribution.

Similarly, the full posterior distribution of Ω will be given by the third and the fourth terms in

(2.2). Since,

p(Ω|β,θ,σ,y) ∝ p(θ|Ω)p(Ω) ∝ |Ω|−
2m+L+1

2 exp

[
−1

2
tr

{(
Ψ+

L∑
i=1

θiθ
′
i

)
Ω−1

}]
,

we see that the full posterior distribution of Ω is an inverse Wishart distribution. Likewise, the full

posterior distribution of σ2
h, h = 1, . . . ,m can be obtained from

p(σ2
1 , . . . , σ

2
m|β,θ,Ω,y) ∝ p(y|β,θ,σ)p(σ2

1 , . . . , σ
2
m)

∝
m∏

h=1

1

(σ2
h)

nh+1

2

exp

[
− 1

2σ2
h

(y −M)′Dh(y −M)′
]
,

where nh is the number of 1’s in Dh and M = Xβ +
∑L

i=1 Ziθi.

Lemma 2.2. Under the model (I) and (II*), the full posterior distributions of θj’s, Ω and σ2
h’s to

implement the Gibbs sampler are given as follow:

θj |β,θ−j ,Ω,σ,y ∼ N

(Z′
jΣ

−1Zj +Ω−1)−1
Z′

jΣ
−1

y −Xβ −
∑
i ̸=j

Ziθi

, (Z′
jΣ

−1Zj +Ω−1)−1


Ω|β,θ,σ,y ∼ Inv-Wishart

(
Ψ+

L∑
i=1

θiθ
′
i,m+ L

)
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and

σ2
h|β,θ,Ω,y ∼ Inv-Wishart

(
(y −M)′Dh(y −M), nh − 1

)
,

where Inv-Wishart(Ψ,m) denotes an inverse Wishart distribution with m degrees of freedom and

inverse scale matrix Ψ.

3. Replicate Crossover Design

Let yijkh denote the underlying pharmacokinetic characteristic (possibly taking logarithms) on the

jth subject in the ith sequence during kth period where i = 1, . . . , s; j = 1, . . . , ni; k = 1, . . . , c;h =

1, . . . ,m. We consider following linear mixed model (Hyslop et al., 2000):

yijkh = µh + νi + πk + γikh + θijh + ϵijkh, (3.1)

where µh is the mean response of the hth formulation; νi is the fixed effect of the ith sequence; πk

is the fixed effect of the kth period; γikh is the fixed effect of interaction between sequence, period

and formulation; θijh is the random effect of the jth subject in the ith sequence under formulation

h. For the random components, it is assumed that the distribution of θij = (θij1, . . . , θijm)′ is a

multivariate normal with mean 0 and variance-covariance matrix Ω = {σhℓ}m×m with σhℓ = σ2
Bh

if h = ℓ, and σhℓ = ρhℓσBhσBℓ if h ̸= ℓ, and the customary random error ϵijkh’s are mutually

independent and normally distributed with mean zero and variance σ2
Wh. Here σ2

Bh and σ2
Wh are

the between-subject and the within-subject variances of formulation h, respectively, and ρ’s are the

correlations between two formulations on the same subject.

Note that in (3.1), h is determined by i and k by the nature of the replicate crossover design. It

would suffice to use three subscripts to describe the model, but we use four subscripts for notational

convenience. Note also that (3.1) has more parameters than can be estimated from the data. To

avoid this over-parameterization, some constraints on the fixed effects should be imposed. We need

one constraint on each set of νi’s and πk’s, and s+ c constraints on γikh’s. Sum-to-zero constrains

are customarily imposed, but other constraints are also possible with the different interpretation of

model parameters.

Then, we can write the replicate crossover design in a matrix notation as:

y = X1µ+X2ν +X3π +X4γ +

s∑
i=1

ni∑
j=1

Zijθij + ϵ, (3.2)

where µ = {µh}m×1,ν = {νi}(s−1)×1,π = {πk}(c−1)×1,γ = {γikh}(sc−s−c)×1, and Xi’s and Zij ’s

are design matrices. The specific form of the design matrices depends upon the study design, but it

can be given in an obvious manner. Furthermore, the design matrices of fixed effects have the full

column ranks, and the column spaces are mutually disjoint so that X = (X1, . . . ,X4) would have

the full column rank. Since θij
iid∼ N(0,Ω) and ϵ ∼ N(0,Σ) where Σ =

∑m
h=1 σ

2
WhDh, the Gibbs

sampler proposed in the previous section is applicable to the replicate crossover design.

Example 3.1. The FDA provided data sets (http://www.fda.gov/Drugs/ScienceResearch/Research

Areas/Biostatistics/ucm081434.htm) which were from replicate and non-replicate in vivo bioequiv-

alence studies submitted to the FDA and used by agencies in support of proposals. We reanalyze

a data set referred to as 17A. The data set consists of the values of AUC of 37 subjects who
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Table 3.1. Bayes and ANOVA estimate(standard error) of parameters in dataset 17A

Method
Parameter

µT µR σ2
BT σ2

BR ρB σ2
WT σ2

WR

Bayes 7.622(.109) 7.664(.103) 0.405(.114) 0.384(.105) 0.957(.032) 0.113(.028) 0.076(.019)

ANOVA 7.621(.110) 7.662(.104) 0.400 0.365 0.937 0.098 0.067

were administered an antihypertensive path in a four-period, two-sequence crossover trial with

RTTR/TRRT manner. The model of the data is a typical example of (3.2) where s = 2, c = 4 and

h = {T,R}. Here T and R represent the test and the reference formulation, respectively.

For the analysis, the proposed Gibbs sampling was conducted for the logarithmic scale of AUC for

five times to check the convergence of Gibbs sampling. Each chain consisted of 50,000 iterations

with the first 20,000 iterations discarded, and every 10th sample retained. The mean and standard

deviation of posterior distributions were calculated. We also obtained the ANOVA estimates and

their standard errors for comparison. The results are shown in Table 3.1. It seems that the classical

method underestimates the parameters slightly from a Bayesian point of view.

The FDA guidance recommended the use of an ABE criterion to compare bioavailability measures

for replicate and nonreplicate bioequivalence studies of both immediate- and modified-release prod-

ucts. The European Medicines Agency guideline (2010) also states that “To date, most bioequiva-

lence studies are designed to evaluate average bioequivalence”. Both regulatory agencies recommend

to testH0 : µT −µR ≤ log(0.80) or µT −µR ≥ log(1.25) against H1 : log(0.80) < µT −µR < log(1.25)

at 5% significance level to claim the ABE. The TOST (two one-side tests) is a well-known clas-

sical approach for the problem. That is, if 90% confidence interval of µT − µR is contained in

(log(0.8), log(1.25)), then the ABE can be claimed. A classical 90% confidence interval for µT −µR

is (−0.1409, 0.0578), while Bayesian credible set is calculated as (−0.1402, 0.0557). Thus, the ABE

can be concluded by both frequentist and Bayesian. The Bayesian treats the testing problem some-

what differently. However, we used the TOST principle to follow the recommendation of regulatory

agencies. The credible set is computed from the posterior distribution of µT − µR.

The FDA stated the logarithmic scale of AUC of dataset 17A is considered to have large subject-

by-formulation interaction (Var(θijT − θijR) > (0.15)2) that would make it necessary to assess the

IBE. To assess IBE by the moment-based criterion, which was recommended by the FDA, it needs

to test HIBE
0 : ΘIBE ≥ θibe vs. HIBE

1 : ΘIBE < θibe at 5% significance level where

ΘIBE =
(µT − µR)

2 + σ2
D + σ2

WT − σ2
WR

max{σ2
W0, σ

2
WR}

,

and θibe and σ2
W0 are predefined values. Similarly, PBE can be assessed by testing HPBE

0 : ΘPBE ≥
θpbe vs. HPBE

1 : ΘPBE < θpbe with given θpbe and σ2
0 , and

ΘPBE =
(µT − µR)

2 + σ2
T + σ2

R

max{σ2
0 , σ

2
R}

.

The FDA gave σ2
W0 = σ2

0 = 0.04, θibe = 2.4948 and θpbe = 1.74483. One may refer Hauschke et al.

(2007) for the rational of these values.

The estimates of ΘIBE and ΘPBE can be obtained easily by substituting REML or ANOVA estimates

for corresponding parameters; however, these estimates cannot be used directly for the testing

problems, since the distributions of those estimates are unknown. The frequentist solved this

problem by employing the bootstrap method or constructing approximate confidence intervals for
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Table 3.2. Point estimate and 90% confidence interval for µR − µT for assessing ABE, and Point estimates and 95% one-side
confidence limits for ∆PBE and ∆IBE for assessing PBE and IBE

Bioequivalence
Confidence limits

concept
Point estimate Lower Upper Lower Upper

ANOVA Bayes ANOVA Bayes

ABE −0.0416 −0.0420 −0.1409 0.0578 −0.1402 0.0557

PBE −0.6869 −0.7396 −0.2708 −0.4438

IBE −0.0853 −0.1098 0.2709 0.0061

linear functions of variance components. However, the Bayesian can enjoy the advantage of Gibbs

sampling for the testing problems. The posterior distributions of ΘPBE and ΘIBE are obtainable

during the Gibbs sampling process.

According to the FDA guidance (1997), the test should be based on a one-side upper 95% confidence

interval, and the null hypothesis is rejected if the upper bound is smaller than the predefined value

θ. The upper bounds for testing HPBE and HIBE are 0.4706 and 2.6142, respectively. Thus, PBE

can be concluded. However, IBE cannot be concluded. This may be due to a high subject-by-

formulation interaction.

A classical approach for assessing PBE or IBE is to test a linearized version of the hypothesis that

can be written as H0 : ∆ ≥ 0 vs. H1 : ∆ < 0 where ∆IBE = (µT − µR)
2 + σ2

D + σ2
WT − σ2

WR −
θibm max{σ2

W0, σ
2
WR} and ∆PBE = (µT − µR)

2 + σ2
T + σ2

R − θpbe max{σ2
0 , σ

2
R}. Table 3.2 shows

the upper bounds of one-side 95% confidence intervals for the linearized version of hypotheses for

comparison of a Bayesian and a classical approach. If the upper bound is smaller than zero, then

the corresponding bioequivalence can be concluded. Thus, we see that both methods reach the

same conclusions.

4. Remarks

In this paper, we introduce a hierarchical Bayesian method for a general lineal mixed model. The

method is applicable to bioequivalence studies. The method is general since replicate and nonrepli-

cate crossover designs employed in a bioequivalence study can be expressed as a linear mixed model.

In addition, it is flexible as well because it can meet most demands in a bioequivalence study. For

instance, the joint posterior distribution of parameters enables us to assess bioequivalence concepts

with the different criterion such as the moment-based or probability-based. As previously men-

tioned, the FDA omitted the PBE and IBE concepts from their guidance. This is mainly due to

some drawbacks of the moment-based and probability-based criterions. However, there may be a

common sense that the decision on bioequivalence of two formulations should not be solely based

on a comparison of the means. The between-subject variance or subject-by-formulation interactions

should somehow be investigated. We believe that a new criterion that incorporates the common

sense will require the flexibility of a Bayesian method in the future.
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