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Abstract

The actual power performance of historical structural change tests are compared under various alternatives.

The tests of interest are F , CUSUM, MOSUM, Moving Estimates and empirical distribution function tests

with both recursive and ordinary least-squares residuals. Our comparison of the structural tests involves

limiting distributions under the null hypothesis, the ability to detect the alternative hypotheses under one or

double structural change, and smooth change in parameters. Even though no version is uniformly superior

to the other, the knowledge about the properties of those tests and connections between these tests can be

used in practical structural change tests and in further research on other change tests.

Keywords: Brownian bridge process, Brownian motion process, change-point model, CUSUM, empiri-

cal distribution functional test, MOSUM, moving estimates test, recursive residual, stochastic process,

structural change.

1. Introduction

Methods to detect structural changes or parameter instabilities in the linear regression models have

been developed in econometrics and statistics communities. Structural stability is of importance in

regression models. A form of model misspecification as parameter nonconstancy, may have severe

consequences on inference if left undetected. In particular, if the data generating process changes

in some ways, then forecasts loss accuracy. In consequences, many econometricians routinely apply

tests for parameter change. Significant effort has been devoted to obtaining convenient and powerful

tests in a variety of modeling contexts.

Consider the following linear regression model

Yi = x′
iβi + ϵi, i = 1, . . . , T, (1.1)

where βi is a k× 1 vector and the errors ϵ1, . . . , ϵT is a martingale difference sequence with respect

to some sequence of σ-algebras {Fi} with E(ϵ2i |Fi−1) = σ2, and that xi is {Fi−1} measurable and

obeys the weak laws of large numbers.
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Tests on structural change are concerned with testing the null hypothesis of “no structural change”

H0 : βi = β0, for all i, (1.2)

which means no change in the regression parameter, against the alternative that the coefficient

vector varies over time.

Various tests have been developed for different alternatives and for different estimation techniques.

These tests can be divided in three classes that are differently suitable for certain patterns of

deviation from the null hypothesis. The first class is the tests from the F test framework (Hansen,

1992, Andrews, 1993) that assumes one breakpoint under the alternative. The second class is the

tests from the generalized fluctuation test framework (Kuan and Hornik, 1995, Zeileis, 2005) that

can detect various types of structural changes. The third class is a nonparametric tests based on

the empirical distribution functions (Bai, 1996).

Chow (1960) was the first to suggest the F test if the potential change-point is known. Andrews

(1993) and Andrews and Ploberger (1994) suggested three types of test statistics - sup F , ave F ,

exp F - that are based on different kinds of F -statistics for the one time alternative change. The

asymptotic theory was established for models estimated by generalized methods of moments(GMM)

by Andrews (1993). For unknown change-points F statistics can be calculated for an interval of

potential change-points and their supremum can be used as the test statistic. Such a test rejects

the null hypothesis if one of the computed F statistics increases over a certain critical value or if

the path of F statistics crosses a constant boundary. The sequences of F statistics can be treated

as an empirical fluctuation process.

Starting from the recursive CUSUM test of Brown et al. (1975), a large variety of fluctuation tests for

structural change in linear regression models by ordinary least squares(OLS) have been suggested.

These tests are typically derived without a particular pattern of deviation from the parameter

stability and are emphasized as suitable as an explorative tool. Ploberger and Krämer (1992),

motivated by the intuition that least-squares residuals can better approximate true disturbances

under the null hypothesis, proposed a CUSUM test based on recursive and least-squares residuals.

However, Bauer and Hackl (1978) found that cumulated sums of recursive residuals are not sensitive

to certain types of parameter changes, and proposed a MOSUM test based on moving sums of

recursive residuals. Chu et al. (1995a) proposed a least-squares-MOSUM test based on least-squares

residuals and its limiting distribution is a standard Wiener process. In particular, fluctuation tests

based on OLS residuals and MOSUM tests are popular because they are easy to compute and to

interpret. The OLS-based CUSUM and MOSUM tests have similar properties as the corresponding

estimate-based processes and under a single shift alternative the OLS-CUSUM path should have a

peak and the OLS-MOSUM path a shift around the change-point. As an extension of invariance

principle in the sequential testing, Horváth et al. (2004) proposed two monitoring schemes to

detect a structural change. Aue et al. (2006) developed asymptotic theory for monitoring schemes

to detect a change in the regression parameters.

Fluctuation tests are either based on estimates or on residuals. The idea of the estimates-based

tests is, that if there is a structural change in the data, the estimate of the regression coefficients

(based on all data) should be substantially different from the subsample estimates of the data

that do not contain the structural changes; however, these estimates should be smaller if the true

coefficients remain constant over time. In this case an empirical process can be computed by the

differences of these subsample estimates with the overall estimate. The resulting empirical process

under the null hypothesis is essentially governed by the functional central limit theorem; however,
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under the alternative, this empirical process will ‘fluctuate’ in the sense that its behavior is not

completely characterized by the functional central limit theorem. A test for parameter constancy

can be obtained by assigning an appropriate functional to measure the fluctuation of the empirical

process of parameter estimates; in addition, this test rejects the null hypothesis if this process

fluctuates significantly.

Loynes (1980) studied the empirical distribution of generalized residuals that are residuals from

generalised regression and gave a hint for the use of a goodness-of-fit test for a model based on the

empirical distribution function of the residuals. Resembling the prototypical Kolmogorov-Smirnov

two-sample test, there are tests based on the non-weighted sequential empirical processes of residuals

that include Csörgö and Horváth (1987, 1997). Carlstein (1988) and Dümbgen (1991) proposed

to estimate a change-point under the alternative hypothesis base on test statistics. Bai (1996)

extended this type test to regression models with estimated parameters as an empirical distribution

function approach. Kuan and Hornik (1995) gave a unifying view as fluctuation tests for parameter

constancy without assuming a specific alternative. Zeileis (2005) also provided a unified approach

to structural change tests by embedding the tests into the same framework and Zeileis et al. (2007)

developed the R package for structural change tests. Silva and Teixeira (2008) surveyed structural

change analysis which made an important tradition in economic theory and testified the recent rise

of interest in structural change where technological issues gained increased relevance. There has

been a strong impetus towards empirically led work and a demand for the appropriate treatment

to detect changes.

In this paper we provide a comparison of some historical tests for structural change. We compare

the F tests, several fluctuation tests and empirical distribution functional tests with their statistical

properties as limiting distributions and empirical behaviors via simulation.

This paper provides the asymptotic properties and simulation results for a wide variety of structural

change models that arise in econometric applications and provides tests that can accommodate

different situations with structural change. The paper is organized as follows. We introduce the

regression model and the structural change problems in Section 1. F tests are described in Section

2. Generalized fluctuation tests, CUSUM and MOSUM tests, and Moving Estimate tests are

explained in Section 3. Empirical distribution function tests based on the nonparametric empirical

distribution, are considered in Section 4. A numerical power comparison of these tests via simulation

is provided and an illustration with a macroeconomic example is included in Section 5. Section 6

concludes the paper.

2. FFF Tests

Andrews (1993) and Andrews and Ploberger (1994) suggested three types of test statistics: SupF ,

AvgF and ExpF statistics that are based on different kind of F statistics such as Wald, LM or

LR statistics in a very general class of models fitted by GMM(generalized methods of moments).

These statistics are easy to interpret as well as possess certain optimal properties against single

shift alternatives. The other two require partial sample estimates before and after a hypothetical

break point moved over a subset of the sample.

For every potential change-points a F statistic is computed. For this OLS model is fitted for the

observations before and after the potential change-point. At tth point, with k regressors, the error

sum of squares(ESSt) with OLS residuals from a segmented regression, and the residual sum of
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squares(RSS) from the unsegmented model are computed as

FT (t) =
RSS− ESSt

ESSt/(T − 2k)
.

Let FT (t) denote a Wald, Lagrange multiplier(LM), or likelihood ratio statistic of the hypothesis

of no structural change (β = β0) for given t, where 1 < t1 < t ≤ t2 < T .

SupF = sup
t1≤t≤t2

FT (t). (2.1)

The Andrews and Ploberger (1994) “Exp” and “Avg” tests are

ExpF = ln

(
1

t2 − t1 + 1

t2∑
t=t1

exp

(
1

2
FT (t)

))
, (2.2)

and

AvgF =
1

t2 − t1 + 1

t2∑
t=t1

FT (t). (2.3)

As shown by Andrews (1993) and Andrews and Ploberger (1994), under a wide class of regularity

conditions, these statistics have the asymptotic null distributions as follows

SupFT →d sup
π1≤τ≤π2

F (τ),

ExpFT →d ln

(
1

π2 − π1

∫ π2

π1

exp

(
1

2
F (τ)

)
dτ

)
and

AvgFT →d
1

π2 − π1

∫ π2

π1

F (τ)dτ,

where π1 = t1/T , π2 = t2/T and

F (τ) =
(W (τ)− τW (1))′(W (τ)− τW (1))

τ(1− τ)

here W (τ) is a vector Brownian motion.

Hansen (1997) suggested a more accurate calculation of asymptotic p-values.

3. Generalized Fluctuation Tests

Zeileis (2005) provided a unifying view on the structural change tests by generalized M-fluctuation

test framework. The unified tests are based on the same FCLT and just use different functionals to

compute test statistics. To assess the null hypothesis, the parameter β is estimated by M-estimation

that includes ML, OLS, and other robust estimation techniques. The parameter estimate β̂ is

computed once for the full sample (assuming H0 is true) along with a corresponding fluctuation

process that captures departures from stability. The estimate and the corresponding fluctuation

process depend on the choice of suitable estimating function ψ(·), which should have zero expectation
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at the true parameters E[ψ(Yi,xi,βi)] = 0. Hence under the null hypothesis,

T∑
i=1

ψ(Yi,xi, β̂i) = 0,

and the decorrelated partial sums of the expression on the left can be used as the fluctuation process

capturing structural changes over time. The resulting cumulative score process is referred to as the

empirical fluctuation process efp(·) and is formally defined as

Wn

(
t, θ̂
)
= n− 1

2

[Th]∑
i=1

ψ
(
Yi,xi, β̂i

)
, (3.1)

efp(t) = Ĵ− 1
2Wn(t, θ̂), (3.2)

where Ĵ is some suitable consistent estimate of the covariance matrix of the scores ψ(Yi,β).

Under the null hypothesis, an FCLT(functional central limit theorem) holds: the empirical fluc-

tuation process efp(·) converges to a k-dimensional Brownian bridge W 0(·), which can be written

as W 0(t) = W (t) − tW (1), where W (·) is a standard k-dimensional Brownian motion. Under the

alternative, the fluctuation process should typically exhibit peaks at the times changes in β occur.

3.1. CUSUM tests based on residuals

Starting with Brown et al. (1975), residuals became one of the most important tools in change-point

analysis for testing the constancy of regression relationships. In Brown et al. (1975) the recursive

residual is defined as

wn =
Yn − x′

nβ̂n−1√
1 + x′

n(X
′
n−1Xn−1)−1xn

, n = k + 1, . . . , T, (3.3)

where X′
n−1 = [x1, . . . ,xn−1] and Y′

n = [Y1, . . . , Yn]. Brown et al. (1975) showed that under

H0, wk+1, . . . , wT are independent N(0, σ2). For s = 1, . . . , T , the sth cumulated sum of recursive

residuals is

R(s) =
1

σ̂T
1
2

s∑
n=k+1

wn, for s = k + 1, . . . , T, (3.4)

where σ̂ denotes the estimated standard deviation. For example the first-order difference-based

estimator

σ̂2
R =

1

2(n− 1)

T∑
i=2

(Yi − Yi−1)
2 (3.5)

proposed by Rice (1984) or σ̂2 =
∑T

n=1(Yn−x′
nβ̂T )

2/(T −k) can be used. It rejects for large values

of

Trec cus = max
1≤s<T

|R(s)|. (3.6)

From the properties of the wn’s under H0, the sequence R(k+1), . . . , R(T ) is a sequence of approx-

imately normal variables such that

E[R(s)] = 0, V [R(s)] = s− k and C[R(s), R(r)] = min(s, r)− k. (3.7)
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R(s) is approximated by the continuous Gaussian process with the mean and covariance functions

in (3.7), which is the Brownian motion process starting from zero at time t = k.

Ploberger and Krämer (1992) introduced the least-squares CUSUM test based on the maximal

fluctuation of these cumulated sums, and showed that its asymptotic distribution. The ordinary

least-squares residuals

en = Yn − x′
nβ̂T , n = 1, . . . , T (3.8)

are defined with the least squares parameter estimate β̂T .

Note that there are T least-squares residuals, but only T − k recursive residuals. Unlike recursive

residuals, OLS residuals usually change whenever another observation is added to the sample. In

addition, they are correlated and heteroskedastic even under H0. However, they better approximate

the true disturbances under H0. The OLS residuals sum to zero so that the cumulated sums do not

drift off after the structural change, as often happens with recursive residuals.

For s = 1, . . . , T , the sth cumulated sum of least-squares residuals is

L(s) =
1

σ̂T
1
2

s∑
n=1

en (3.9)

and the test statistic is

Tols cus = max
1≤s<T

|L(s)|. (3.10)

Its asymptotic distribution is given in Ploberger and Krämer (1992) as

L(s) → B(z), in distribution as T → ∞,

where B(z), 0 ≤ z ≤ 1 is the standard Brownian bridge.

3.2. MOSUM tests

Bauer and Hackl (1978, 1980) found that the cumulated sums of recursive residuals are not very

sensitive to certain type of parameter changes, and proposed the use of moving sums(MOSUMs)

of recursively calculated residuals for testing the constancy of the parameters. While all past

observations contribute to CUSUM test statistics, MOSUMs use the sum of a fixed number of past

residuals being taken as a test criterion at each point of time. Chu et al. (1995a) considered the

MOSUM test for the regression models and characterized the limiting process of moving sums of

recursive residuals and those of least squares residuals in terms of the increments of a standard

Wiener process.

MOSUM of recursive residual wn in (3.3) is

Mrec(j, h) =
1

σ̂[Th]
1
2

j+[Th]∑
n=j+1

wn. (3.11)

The corresponding recursive-residual-MOSUM statistic is defined as

Trecmos = max
1≤j<T−[Th]

|Mrec(j, h)|. (3.12)
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Chu et al. (1995a) showed that under H0,

Trecmos → max
0≤z≤1−h

|Sh(z)| ≡ max
0≤t≤ 1

h
−1

|W (t+ 1)−W (t)|,

where Sh(z) = h−1/2{W (z + h)−W (z)} (0 ≤ z ≤ 1− h) and W is a standard Wiener process.

The significance limits for the simultaneous test of MOSUMs may be taken constant over time. For

j = 0, 1, . . . , T − [Th], the jth moving sum of least-squares residual is

Mls(j, h) =
1

σ̂[Th]
1
2

j+[Th]∑
n=j+1

en, (3.13)

and the corresponding least-squares-MOSUM statistic is defined as

Trecmos = max
1≤j<T−[Th]

|Mls(j, h)|. (3.14)

Chu et al. (1995b) showed that under H0,

Trecmos → max
0≤z≤1−h

∣∣S0
h(z)

∣∣ ≡ max
0≤t≤ 1

h
−1

|B(t+ 1)−B(t)|,

where S0
h(z) = h−1/2{B(z + h)−B(z)} (0 ≤ z ≤ 1− h) and B is a Brownian bridge on [0, 1].

The MOSUM test differs from the CUSUM test in that each moving sum contains a fixed number of

residuals, whereas cumulated sums incorporate more residuals. An important issue in the MOSUM

test is the choice of bandwidth h. If h is large, each moving sum includes too many residuals, and

only a few moving sums are available to detect possible changes. Hence, moving sums with a large

h are not very sensitive to parameter variation; however, if h is small, the sample variation in the

moving sums is likely to be large, and the limit distribution may not be a good approximation.

3.3. Moving estimates tests

For the parameter constancy test, it is natural to consider the difference of parameter estimators at

each possible change-point. Chu et al. (1995b) proposed the moving-estimates test which is asymp-

totically equivalent to the maximal likelihood ratio test under the alternative of double structural

change in parameters. Moving estimate(ME) test is determined by the fluctuation of moving esti-

mates computed from a sequence of subsamples of the same size. As moving estimates implement

a locally weighted regression, the ME test can be interpreted as a nonparametric test for a non-

constant mean function. The ME test can be robustified to allow for heteroskedasticity and serial

correlation using the appropriate covariance computation.

TME,h = max
1≤n<T−[Th]

[Th]

σ̂
√
T

∥∥∥∥Q 1
2
T

(
β̃T (n, [Th])− β̂T

)∥∥∥∥ , (3.15)

where h is the bandwidth of moving windows characterizing the number of observations in the

window, σ̂2 is an estimator of σ2, and ∥ · ∥ is some suitable norm. Also

QT = T−1
T∑

i=1

xix
′
i,

β̃(n, [Th]) =

k+[Th]∑
i=n+1

xix
′
i

−1k+[Th]∑
i=n+1

xiyi

 , n = 0, . . . , T − [Th],
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here QT → Q almost surely and β̂T is the full-sample OLS estimate of β.

Note that moving estimates are computed from windows (subsamples), each with [Th] observations,

moving across the whole sample. This is in contrast with the recursive estimates that are obtained

from growing windows. That is, an OLS estimate from a potential shifting period with the duration

[Th] is just a moving estimate with the window size [Th].

In the more general case where {ϵi} are heteroskedastic and/or serially correlated, the ME tests

can be robustified by computing the covariance matrix properly as

TgME,h = max
1≤n<T−[Th]

[Th]√
T

∥∥∥∥D̂− 1
2

T

(
β̃T (n, [Th])− β̂T

)∥∥∥∥ , (3.16)

where D̂T is a consistent estimator of D = Q−1VQ−1 such as D̂
−1/2
T = V̂

−1/2
T QT , and

V = lim
T→∞

1

T
E

[(
T∑

i=1

xiϵi

)(
T∑

i=1

xiϵi

)′]
.

For example, Newey and West (1987) proposed a consistent covariance estimator. By letting the

bandwidth h of moving windows tend to zero at a suitable rate, one can obtain a consistency result

for a general, unknown regression function.

Under the null hypothesis, if V̂T is consistent for V,

TME,h ⇒ max ∥Mh∥ = max
∥∥W 0(t+ h)−W 0(t)

∥∥ , for 0 ≤ t ≤ 1− h,

where W 0 is the vector Brownian bridge process. Therefore the limiting distribution of the ME test

is determined by the behavior of the limiting process Mh and the associated norm.

4. Empirical Distribution Functional Tests

The empirical distribution function (the cumulative distribution function associated with the em-

pirical measure of the sample) estimates the true underlying cdf of the points in the sample. Loynes

(1980) studied the empirical distribution of the generalized residuals in regression models and gave a

hint for the use of goodness-of-fit test for a model based on the empirical distribution function of the

residuals. Resembling the prototypical Kolmogorov-Smirnov two-sample test using empirical dis-

tribution functions, Csörgö and Horváth (1987, 1997) proposed change tests based on nonweighted

sequential empirical processes of residuals. Carlstein (1988) and Dümbgen (1991) proposed to es-

timate a change-point under the alternative hypothesis based on these test statistics. Bai (1996)

extended this type test to regression models with estimated parameters as an empirical distribution

function approach.

For each fixed n, the empirical distribution function(edf) based on the first n residuals is defined as

F̂n(z) =
1

n

n∑
t=1

I(ϵ̂t ≤ z)

and the edf based on the last T − n residuals as

F̂ ∗
T−n(z) =

1

T − n

T∑
t=n+1

I(ϵ̂t ≤ z),
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where I(·) is the indicator function. Let

T
( n
T
, z
)
=
n

T

(
1− n

T

)√
n
(
F̂n(z)− F̂ ∗

T−n(z)
)
. (4.1)

The test statistic based on the edf’s proposed by Bai (1996) is

Tedf = max
1≤n<T

sup
z

∣∣∣T ( n
T
, z
)∣∣∣ , (4.2)

where ∥y∥∞ = max{|y1|, . . . , |yp|} the supremum with respect to z is taken over the entire real

line. This test Tedf looks for the maximum value of weighted Kolmogorov-Smirnov statistics for

all possible sample splits. The test T (n/T, z) is asymptotically distribution free and has nontrivial

local power against changes in the scale parameter of the disturbances. If a trending regressor exits,

Tedf will not be asymptotically distribution free. To circumvent these undesirable properties, Bai

(1996) developed a test based on the regressor weighted empirical distribution function of residuals.

Let Xn = (x1, . . . ,xn)
′ and

An = (X′X)−
1
2 (X′

nXn)(X
′X)−

1
2 .

Bai (1996) suggested analogously k × 1 vector process

T ∗
( n
T
, z
)
= (X′X)−

1
2

n∑
t=1

xtI(ϵ̂t ≤ z)−An(X
′X)−

1
2

T∑
t=1

xtI(ϵ̂t ≤ z) (4.3)

and the test statistic

T ∗
edf = max

1≤n<T
sup
z

∥∥∥T ∗
( n
T
, z
)∥∥∥

∞
. (4.4)

Bai (1996) proved that under H0,

T
( n
T
, z
)
→ B(·, F (·)) and T ∗

( n
T
, z
)
→ B∗(·, F (·)),

where B(u, v) is a Gaussian process on [0, 1]2 with zero mean and covariance function

E[B(r, u)B(s, v)] = (r ∧ s− rs)(u ∧ v − uv),

and B∗ = (B1, B2, . . . , Bk) is a vector of p independent two-parameter Brownian bridges on [0, 1]2.

5. Numerical Results

5.1. Simulation

Before applying these monitoring procedures to real-world data, a Monte Carlo study is conducted

to study size and power properties. The empirical critical values are calculated with the model

(1) and the empirical sizes under α = 0.10, 0.05 are calculated and shown in the second column

of Table 5.1. The powers of the tests are computed with the number of time points T = 100 in

1,000 repetitions. For the moving sums estimators, the bandwidth 0.1, 0.2, 0.3, 0.4, 0.5 are used to

investigate the effects of the window size. The data-generating processes considered are as follows.

(1) Simple model with β = 1 under H0: no change

Yi = β + ϵi, i = 1, . . . , T.
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(2) Single structural change model with β = 1, ∆ = 1.0, λ = 0.3, 0.4, 0.5, 0.6, 0.7

Yi =

{
βxi + ϵi, i = 1, . . . , Tλ,

(β +∆)xi + ϵi, i = Tλ+ 1, . . . , T.

(3) Double structural change model with β = 1, ∆ = 0.5, λ1 = 0.3, λ2 = 0.5, 0.6, 0.7

Yi =


βxi + ϵi, i = 1, . . . , Tλ1,

(β +∆)xi + ϵi, i = Tλ1 + 1, . . . , Tλ2,

βxi + ϵi, i = Tλ2 + 1, . . . , T.

(4) Double structural change model with β = 1, ∆ = 0.5, λ1 = 0.3, λ2 = 0.5, 0.6, 0.7

Yi =


βxi + ϵi, i = 1, . . . , Tλ1,

−βxi + ϵi, i = Tλ1 + 1, . . . , Tλ2,

βxi + ϵi, i = Tλ2 + 1, . . . , T.

(5) Level structural change model with β = 1, ∆ = 1.0, λ = 0.5, 0.6, 0.7

Yi =

{
βxi + ϵi, i = 1, . . . , Tλ,

βxi +∆+ ϵi, i = Tλ+ 1, . . . , T.

(6) Smooth change model with ∆ = 1.0, λ = 0.4, 0.5, 0.6

Yi =

{
cos(3πxi) + ϵi, i = 1, . . . , Tλ,

cos(3πxi) + ∆+ ϵi, i = Tλ+ 1, . . . , T.

(7) Smooth and level change model with λ = 0.5

Yi =

{
cos(πxi) + ϵi, i = 1, . . . , Tλ,

xi + ϵi, i = Tλ+ 1, . . . , T.

(8) Level and smooth change model with ∆ = 1.0, λ = 0.5

Yi =

{
xi + ϵi, i = 1, . . . , Tλ,

cos(πxi) + ∆+ ϵi, i = Tλ+ 1, . . . , T,

where ϵi are i.i.d. normal errors having mean 0 and variance 1.

In this paper, we consider fixed-h tests for the sake of simplicity for the window size. For MOSUM

and ME tests, the bandwidth h = 0.1, 0.2, 0.3, 0.4, 0.5 are considered. In tables, test r.mos.01 notes

the MOSUM test with the recursive residuals and h = 0.1. Likewise test me.01 means the ME test

with h = 0.1. The tests are considered on the possible range of change-points, from λ = 0.15 to

0.85.

For one structural change, the locations of change-point λ = 0.3, 0.4, 0.5, 0.6, 0.7 are considered

corresponding to a shift early, midway and late in the sample period. At level α = 0.05, the

empirical powers under the null hypothesis are given in the second column of in Table 5.1. The

powers for one structural change-point cases are shown in Table 5.1. Table 5.1 shows that F tests
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Table 5.1. Empirical powers of tests based on T = 100 in 1,000 Repetitions with i.i.d. normal errors with sd = 1.0 in various
one change-point models with ∆ = 1.0 at level α = 0.05

Method
Model (1) Model (2)

null λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7

supF 0.036 0.049 0.085 0.144 0.218 0.347

aveF 0.046 0.058 0.079 0.133 0.303 0.462

expF 0.041 0.053 0.081 0.140 0.262 0.406

rec.cus 0.054 0.047 0.069 0.098 0.112 0.103

ols.cus 0.035 0.049 0.074 0.126 0.250 0.441

r.mos.01 0.032 0.044 0.061 0.101 0.125 0.199

r.mos.02 0.041 0.056 0.092 0.148 0.216 0.330

r.mos.03 0.051 0.066 0.096 0.172 0.247 0.365

r.mos.04 0.044 0.069 0.089 0.180 0.269 0.272

r.mos.05 0.045 0.063 0.092 0.166 0.229 0.220

l.mos.01 0.050 0.062 0.077 0.119 0.149 0.195

l.mos.02 0.040 0.068 0.083 0.162 0.245 0.325

l.mos.03 0.040 0.054 0.081 0.163 0.283 0.390

l.mos.04 0.030 0.050 0.062 0.130 0.303 0.433

l.mos.05 0.041 0.054 0.069 0.111 0.295 0.455

me.01 0.056 0.064 0.067 0.057 0.073 0.110

me.02 0.046 0.063 0.067 0.092 0.131 0.142

me.03 0.037 0.052 0.080 0.109 0.159 0.205

me.04 0.040 0.051 0.074 0.145 0.209 0.251

me.05 0.043 0.049 0.063 0.164 0.266 0.321

rec.edf 0.042 0.058 0.055 0.088 0.106 0.059

ols.edf 0.053 0.054 0.063 0.074 0.140 0.330

and MOSUM tests have better power overall in the Model (2). The powers for two structural

change-point cases are shown in Table 5.2 with the Model (3) and Model (4). For double structural

change Model (3), the ME tests with the larger bandwidth perform better than F tests, CUSUM

and MOSUM tests. When two break points are close, the ME tests perform better. The power of

the tests increases with a longer duration of the regime since a shift rather late in the sample period

means that each test has much time to pick up. With the abrupt structural change Model (5), the

powers of ME tests are higher than others. Smooth structural models with one change-point are

considered with the different change-point locations and the their powers are provided in Table 5.3.

With the Model (6), each test gives the similar low powers due to the fluctuation of the functions.

There needs a test to be developed for detecting this type of change. With the Model (7) and Model

(8), MOSUM tests with the recursive residuals perform slightly better.

5.2. Applications to real data

We investigate the evidence of structural change is US real GDP from 1870 to 2009. The logarithm

of the series is shown in Figure 5.1. There is a dip between 1930 and 1940 (the Great Depression)

then accelerated growth during World War II. Wang and Zivot (2000) estimated two structural

change-points at 1930 and 1945 with very high posterior probabilities. The test statistics are

calculated as shown in Table 5.4. All the tests reject the null hypothesis with the significance level

α = 0.05. Some structural test processes are shown in Figure 5.2. They give a hint for the location

of change-point. Therefore, the change-point estimators can be made based on the change test for

parameter change models.
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Table 5.2. Empirical powers of tests based on T = 100 in 1,000 Repetitions in two change-point models with ∆ = 1.0 at level
α = 0.05

Method
Model (3) λ1 = 0.3 Model (4) λ1 = 0.3

λ2 = 0.5 λ2 = 0.6 λ2 = 0.7 λ2 = 0.5 λ2 = 0.6 λ2 = 0.7

supF 0.158 0.264 0.398 0.532 0.862 0.967

aveF 0.171 0.340 0.525 0.494 0.891 0.981

expF 0.178 0.301 0.469 0.548 0.897 0.976

rec.cus 0.076 0.086 0.083 0.140 0.189 0.197

ols.cus 0.163 0.318 0.492 0.519 0.900 0.984

r.mos.01 0.118 0.158 0.236 0.345 0.636 0.824

r.mos.02 0.150 0.241 0.350 0.501 0.794 0.934

r.mos.03 0.171 0.280 0.417 0.517 0.844 0.971

r.mos.04 0.165 0.277 0.331 0.505 0.855 0.897

r.mos.05 0.170 0.218 0.248 0.517 0.687 0.739

l.mos.01 0.152 0.173 0.209 0.517 0.687 0.739

l.mos.02 0.212 0.330 0.383 0.688 0.891 0.944

l.mos.03 0.192 0.393 0.477 0.597 0.951 0.978

l.mos.04 0.170 0.341 0.557 0.478 0.908 0.993

l.mos.05 0.144 0.325 0.520 0.392 0.842 0.977

me.01 0.083 0.081 0.098 0.274 0.352 0.357

me.02 0.116 0.154 0.177 0.436 0.649 0.724

me.03 0.156 0.218 0.253 0.563 0.769 0.839

me.04 0.197 0.306 0.307 0.639 0.885 0.910

me.05 0.209 0.360 0.417 0.639 0.924 0.967

rec.edf 0.068 0.068 0.071 0.147 0.166 0.204

ols.edf 0.083 0.168 0.354 0.211 0.547 0.912

Table 5.3. Empirical powers of tests based on T = 100 in 1,000 Repetitions in various structural change models with ∆ = 1.0

at level α = 0.05

Method
Model (5) Model (6) Model (7) Model (8)

λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.5 λ = 0.5

supF 0.338 0.355 0.437 0.099 0.090 0.078 0.405 0.498

aveF 0.229 0.314 0.534 0.096 0.068 0.064 0.554 0.626

expF 0.338 0.368 0.501 0.096 0.085 0.079 0.489 0.589

rec.cus 0.135 0.114 0.145 0.060 0.061 0.068 0.162 0.257

ols.cus 0.318 0.388 0.558 0.084 0.065 0.068 0.450 0.535

r.mos.01 0.240 0.271 0.320 0.062 0.059 0.065 0.203 0.269

r.mos.02 0.323 0.357 0.441 0.088 0.075 0.063 0.326 0.455

r.mos.03 0.294 0.346 0.470 0.081 0.073 0.066 0.399 0.557

r.mos.04 0.260 0.319 0.340 0.084 0.080 0.081 0.459 0.588

r.mos.05 0.236 0.276 0.293 0.084 0.081 0.072 0.468 0.626

l.mos.01 0.226 0.243 0.260 0.052 0.071 0.058 0.259 0.304

l.mos.02 0.354 0.362 0.440 0.084 0.081 0.081 0.400 0.492

l.mos.03 0.381 0.399 0.483 0.104 0.068 0.081 0.468 0.580

l.mos.04 0.290 0.370 0.538 0.097 0.058 0.073 0.531 0.599

l.mos.05 0.111 0.324 0.555 0.082 0.072 0.058 0.510 0.560

me.01 0.129 0.121 0.143 0.038 0.063 0.051 0.126 0.165

me.02 0.190 0.198 0.228 0.056 0.057 0.047 0.216 0.242

me.03 0.267 0.265 0.297 0.061 0.058 0.064 0.289 0.339

me.04 0.328 0.298 0.348 0.079 0.062 0.056 0.370 0.461

me.05 0.347 0.368 0.404 0.082 0.072 0.064 0.495 0.568

rec.edf 0.239 0.186 0.080 0.101 0.075 0.079 0.068 0.145

ols.edf 0.121 0.117 0.322 0.085 0.058 0.057 0.316 0.302
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Figure 5.1. Scatter plot of US GDP data from 1870 to 2009

Table 5.4. Test statistics for structural change with the US GDP data

F rec ols

CUSUM stat MOSUM stat MOSUM stat ME stat EDF stat

supF 594.920 r.mos.01 2.697 l.mos.01 2.313 me.01 2.324 rec.edf 0.982

aveF 251.182 r.mos.02 4.937 l.mos.02 3.190 me.02 3.521 ols.edf 2.224

expF 292.866 r.mos.03 6.552 l.mos.03 4.018 me.03 4.442

rec.cus 3.239 r.mos.04 7.959 l.mos.04 4.165 me.04 4.984

ols.cus 2.511 r.mos.05 9.201 l.mos.05 4.018 me.05 5.565
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Figure 5.2. Structural test processes for US GDP data
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6. Concluding Remarks

We have considered tests for structural change in the regression parameters. Our proposed test

based on local Fourier estimators is generally applicable to detect changes in regression models. No

version of the structural change tests considered is uniformly superior to the other. The CUSUM

and MOSUM tests are considered and compared with the proposed test. In power comparison, tests

appear to have nontrivial power against general alternatives of parameter nonconstancy because

rejecting the null hypothesis does not necessarily imply one-time structural change. We applied

out method to determine the empirical evidence for structural changes in US GDP data. There are

significant change in the data and the next step must be to estimate the location where structural

change occurs.

Structural stability is of importance in regression models. A form of model misspecification as pa-

rameter nonconstancy, may have a severe consequences on inference if left undetected. In particular,

if the data generating process changes in some ways, then forecasts loss accuracy. In consequences,

many econometricians routinely apply tests for parameter change. Significant effort has been de-

voted to obtain convenient and powerful tests in a variety of modeling contexts. We provided a

comparison of some historical tests for structural change.

Our simulations show that different tests have quite different behavior under various alternatives

and that no test is superior.

The three F tests - SupF , AvgF , and ExpF - are all tests of the same null hypothesis but differ

in their choice of alternative hypothesis. Even though they have power in similar directions, the

choice of the test may be made on a particular application for the purpose of the test. If the desire

is to discover whether there was a swift shift in the regime, then the SupF test is appropriate. The

CUSUM test can do well based on OLS residuals. It reacts to structural shifts that occur late in

the sample and are likely to go unnoticed by the other F tests.

Since power depends on the bandwidth, the sample size, the magnitude of change, the location of

the change-points, and the standard deviation of disturbances, the knowledge about the properties

of these historical tests and connections between these test can be used in practical structural

change tests and in extension to other change tests.

The assumption that the disturbances are independent is restrictive and this assumption can by

weakened to linear processes such as AR(p). Further research is expected with a change test for

more change types and dependent errors. Kim and Hart (1998) considered the change test for

dependent data and Kim and Hart (2011) proposed a change-point estimator that can be used

for independent data and extensively used for dependent data. Their tests and estimators can be

further studied for linear structural change and time series structural change.
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