DOI QR코드

DOI QR Code

Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory

산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론

  • Kim, Dae-Hee (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University) ;
  • Kim, Yeong-Cheol (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
  • 김대희 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 이가원 (충남대학교 전자공학과) ;
  • 김영철 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Received : 2011.10.18
  • Accepted : 2011.11.06
  • Published : 2011.12.27

Abstract

Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

Keywords

References

  1. D. C. Look, Mater. Sci. Eng. B, 80, 383 (2001). https://doi.org/10.1016/S0921-5107(00)00604-8
  2. J.-H. Lim and S.-J. Park, Kor. J. Mater. Res., 19, 417 (2009). https://doi.org/10.3740/MRSK.2009.19.8.417
  3. J.-H. Lim and S.-J. Park, Kor. J. Mater. Res., 19, 443 (2009). https://doi.org/10.3740/MRSK.2009.19.8.443
  4. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, Adv. Funct. Mater., 20, 561 (2010). https://doi.org/10.1002/adfm.200901884
  5. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li and S. T. Lee, Nano Lett., 6, 1887 (2006). https://doi.org/10.1021/nl060867g
  6. A. Bera and D. Basak, Appl. Phys. Lett., 94, 163119 (2009). https://doi.org/10.1063/1.3123167
  7. A. F. Kohan, G. Ceder, D. Morgan and C. G. Van de Walle, Phys. Rev. B Condens. Matter, 61, 15019 (2000). https://doi.org/10.1103/PhysRevB.61.15019
  8. S. B. Zhang, S.-H. Wei and A. Zunger, Phys. Rev. B Condens. Matter, 63, 075205 (2001). https://doi.org/10.1103/PhysRevB.63.075205
  9. F. Oba, S. R. Nishitani, S. Isotani, H. Adachi and I. Tanaka, J. Appl. Phys., 90, 824 (2001). https://doi.org/10.1063/1.1380994
  10. A. Janotti and C. G. Van de Walle, Phys. Rev. B Condens. Matter, 76, 165202 (2007). https://doi.org/10.1103/PhysRevB.76.165202
  11. Y. Q. Gai, B. Yao, Y. F. Li, Y. M. Lu, D. Z. Shen, J. Y. Zhang, D. X. Zhao, X. W. Fan and T. Cui, Phys. Lett., 372, 5077 (2008). https://doi.org/10.1016/j.physleta.2008.05.055
  12. A. Janotti and C. G. Van de Walle, Appl. Phys. Lett., 87, 122102 (2005). https://doi.org/10.1063/1.2053360
  13. P. Erhart, A. Klein and K. Albe, Phys. Rev. B Condens. Matter, 72, 085213 (2005). https://doi.org/10.1103/PhysRevB.72.085213
  14. H. Kim, A. Cepler, M. S. Osofsky, R. C. Y. Auyeung and A. Pique, Appl. Phys. Lett., 90, 203508 (2007). https://doi.org/10.1063/1.2739363
  15. J. L. Lyons, A. Janotti and C. G. Van de Walle, Appl. Phys. Lett., 95, 252105 (2009). https://doi.org/10.1063/1.3274043
  16. C. H. Park, S. B. Zhang and S.-H. Wei, Phys. Rev. B Condens. Matter, 66, 073202 (2002). https://doi.org/10.1103/PhysRevB.66.073202
  17. D. C. Look and B. Claflin, Phys. Status Solidi B, 241, 624 (2004). https://doi.org/10.1002/pssb.200304271
  18. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, Appl. Phys. Lett., 81, 1830 (2002). https://doi.org/10.1063/1.1504875
  19. H. Katayama-Yoshida, T. Nishimatsu, T. Yamamoto and N. Orita, J. Phys. Condens. Matter, 13, 8901 (2001). https://doi.org/10.1088/0953-8984/13/40/304
  20. G. D. Yuan, Z. Z. Ye, L. P. Zhu, Q. Qian, B. H. Zhao, R. X. Fan, C. L. Perkins and S. B. Zhang, Appl. Phys. Lett., 86, 202106 (2005). https://doi.org/10.1063/1.1928318
  21. J. Wang, E. Elamurugu, N. P. Barradas, E. Alves, A. Rego, G. Goncalves, R. Martins and E. Fortunato, J. Phys. Condens. Matter, 20, 075220 (2008). https://doi.org/10.1088/0953-8984/20/7/075220
  22. H. Wang, H. P. Ho and J. B. Xu, J. Appl. Phys., 103, 103704 (2008). https://doi.org/10.1063/1.2921986
  23. M. Joseph, H. Tabata and T. Kawai, Jpn. J. Appl. Phys., 38, L1205 (1999). https://doi.org/10.1143/JJAP.38.L1205
  24. M. Kumar, T.-H. Kim, S.-S. Kim and B.-T. Lee, Appl. Phys. Lett., 89, 112103 (2006). https://doi.org/10.1063/1.2338527
  25. J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu and L. D. Chen, Appl. Phys. Lett., 84, 541 (2004). https://doi.org/10.1063/1.1644331
  26. Y. Yan, J. Li, S. H. Wei and M. M. Al-Jassim, Phys. Rev. Lett., 98, 135506 (2007). https://doi.org/10.1103/PhysRevLett.98.135506
  27. L. G. Wang and A. Zunger, Phys. Rev. Lett., 90, 256401 (2003). https://doi.org/10.1103/PhysRevLett.90.256401
  28. X. M. Duan, C. Stampfl, M. M. M. Bilek and D. R. McKenzie, Phys. Rev. B Condens. Matter, 79, 235208 (2009). https://doi.org/10.1103/PhysRevB.79.235208
  29. G. Kresse and J. Hafner, Phys. Rev. B, 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251
  30. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  31. G. Kresse and J. Furthmüller, Phys. Rev. B, 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  32. J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 118, 8207 (2003). https://doi.org/10.1063/1.1564060
  33. P. E. Blöchl, Phys. Rev. B, 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  34. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  35. D. M. Wood and A. Zunger, J. Phys. A Math. Gen., 18, 1343 (1985). https://doi.org/10.1088/0305-4470/18/9/018
  36. P. Pulay, Chem. Phys. Lett., 73, 393 (1980). https://doi.org/10.1016/0009-2614(80)80396-4
  37. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  38. O. Madelung, Semiconductors-Basic Data, 2nd ed., P. 26, Springer, Berlin (1996).