DOI QR코드

DOI QR Code

Preparation and Luminescent Property of Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1) Phosphors

Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1)의 합성과 형광특성

  • Kim, Yeo-Jin (Department of Engineering in Energy and Applied Chemistry, Silla University) ;
  • Park, Sang-Moon (Department of Engineering in Energy and Applied Chemistry, Silla University)
  • 김여진 (신라대학교 에너지응용화학과) ;
  • 박상문 (신라대학교 에너지응용화학과)
  • Received : 2011.10.19
  • Accepted : 2011.11.07
  • Published : 2011.12.27

Abstract

[ $A_{3-2x/3}Al_{1-z}In_{z}O_4F:Eu_x^{3+}$ ](A = Ca, Sr, Ba, x = -0.15, z = 0, 0.1) oxyfluoride phosphors were simply prepared by the solid-state method at $1050^{\circ}C$ in air. The phosphors had the bright red photoluminescence (PL) spectra of an $A_{3-2x/3}Al_{1-z}In_{z}O_4F$ for $Eu^{3+}$ activator. X-ray diffraction (XRD) patterns of the obtained red phosphors were exhibited for indexing peak positions and calculating unit-cell parameters. Dynamic excitation and emission spectra of $Eu^{3+}$ activated red oxyfluoride phosphors were clearly monitored. Red and blue shifts gradually occurred in the emission spectra of $Eu^{3+}$ activated $A_3AlO_4F$ oxyfluoride phosphors when $Sr^{2+}$ by $Ca^{2+}$ and $Ba^{2+}$ ions were substituted, respectively. The concentration quenching as a function of $Eu^{3+}$ contents in $A_{3-2x/3}AlO_4F:Eu^{3+}$ (A = Ca, Sr, Ba) was measured. The interesting behaviors of defect-induced $A_{3-2x/3}Al_{1-z}In_{z}O_{4-{\alpha}}F_{1-{\delta}}$ phosphors with $Eu^{3+}$ activator are discussed based on PL spectra and CIE coordinates. Substituting $In^{3+}$ into the $Al^{3+}$ position in the $A_{3-2x/3}AlO_4F:Eu^{3+}$ oxyfluorides resulted in the relative intensity of the red emitted phosphors noticeably increasing by seven times.

Keywords

References

  1. S. Shionoya and W. H. Yen, Phosphor handbook, p. 840, CRC Press, USA (1998).
  2. H. E. Hoefdraad, J. Solid State Chem., 15, 175 (1975). https://doi.org/10.1016/0022-4596(75)90242-X
  3. M. Buijs, A. Meyerink and G. Blasse, J. Lumin., 37, 9 (1987). https://doi.org/10.1016/0022-2313(87)90177-3
  4. I. P. Roof, M. D. Smith, S. Park and H.-C. zur Loye, J. Am. Chem. Soc., 131, 4202 (2009). https://doi.org/10.1021/ja8100769
  5. S. Park and T. Vogt, J. Am. Chem. Soc., 132, 4516 (2010). https://doi.org/10.1021/ja909486j
  6. S. Park and T. Vogt, J. Phys. Chem. C, 114, 11576 (2010). https://doi.org/10.1021/jp103202n
  7. A. K. Prodjosantoso, B. J. Kennedy, T. Vogt and P. M. Woodward, J. Solid State Chem., 172, 89 (2003). https://doi.org/10.1016/S0022-4596(02)00128-7
  8. S. Park, J. Lumin., 132, 875 (2012). https://doi.org/10.1016/j.jlumin.2011.12.003
  9. H. Li, S. Zhang, S. Zhou, X. Cao and Y. Zheng, J. Phys. Chem. C, 113, 13115 (2009). https://doi.org/10.1021/jp903647v
  10. J. Huang, L. Zhou, Z. Wang, Y. Lan, Z. Tong, F. Gong, J. Sun and L. Li, J. Alloy. Comp., 487, L5 (2009). https://doi.org/10.1016/j.jallcom.2009.07.153
  11. B. Siritanaratkul, K. Maeda, T. Hisatomi and K. Domen, ChemSusChem, 4, 74 (2011). https://doi.org/10.1002/cssc.201000207
  12. M. Nazarov and C. Yoon, J. Solid State Chem., 179, 2529 (2006). https://doi.org/10.1016/j.jssc.2006.04.032
  13. J. Nayak, S. Kimura and S. Nozaki, J. Lumin., 129, 12 (2009). https://doi.org/10.1016/j.jlumin.2008.07.005
  14. J. Jeong, M. Jayasimhadri, H. S. Lee, K. Jang, S. S. Yi, J. H. Jeong and C. Kim, Phys. B Condens. Matter, 404, 2016 (2009). https://doi.org/10.1016/j.physb.2009.03.038