DOI QR코드

DOI QR Code

Annealing Characteristics of Ultrafine Grained AA1050/AA5052 Complex Aluminum Alloy Sheet Fabricated by Accumulative Roll-Bonding

반복겹침접합 압연공정에 의해 제조한 초미세립 AA1050/AA5052 복합알루미늄합금판재의 어닐링 특성

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Gwang-Jin (Korea Institute of Industrial Technology (KITECH), Automotive Components R&D Group)
  • Received : 2011.10.14
  • Accepted : 2011.11.03
  • Published : 2011.12.27

Abstract

An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to $350^{\circ}C$. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to $250^{\circ}C$. However, above $250^{\circ}C$ it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above $250^{\circ}C$. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.

Keywords

References

  1. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Scripta Mater., 39, 1221 (1998). https://doi.org/10.1016/S1359-6462(98)00302-9
  2. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta Mater., 47, 579 (1999). https://doi.org/10.1016/S1359-6454(98)00365-6
  3. H. -W Kim, S. -H. Jin and S. -B. Kang, J. Kor. Inst. Met. & Mater., 39, 546 (2001) (in Korean).
  4. S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai, Scripta Mater., 46, 281 (2002). https://doi.org/10.1016/S1359-6462(01)01239-8
  5. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., 325, 228 (2002). https://doi.org/10.1016/S0921-5093(01)01416-2
  6. S. H. Lee, J. Cho, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15(4), 240 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.4.240
  7. S. H. Lee, J. Cho, C. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15(9), 555 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.9.555
  8. S. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 16(9), 592 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.9.592
  9. C. Y. Lim, S. Z. Han and S. H. Lee, Met. Mater. Int., 12(3), 225 (2006). https://doi.org/10.1007/BF03027535
  10. N. Takata, S. H. Lee and N. Tsuji, Mater. Lett., 63, 1757 (2009). https://doi.org/10.1016/j.matlet.2009.05.021
  11. S. H. Lee, J. Kor. Inst. Met. & Mater., 43, 786 (2005) (in Korean).
  12. M. Eizadjou, A. K. Talachi, H. D. Manesh, H. S. Shahabi, and K. Janghorban, Compos. Sci. Tech., 68, 2003 (2008). https://doi.org/10.1016/j.compscitech.2008.02.029
  13. S. H. Lee and C. S. Kang, Kor. J. Mat. Mater., 49(11), 893 (2011) (in Korean).
  14. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino, Scripta Mater., 47, 893 (2002). https://doi.org/10.1016/S1359-6462(02)00282-8

Cited by

  1. Microstructure and Tensile Properties of Al-Mn/Al-Si Hybrid Aluminum Alloy Prepared by Electromagnetic Duo-Casting vol.22, pp.2, 2012, https://doi.org/10.3740/MRSK.2012.22.2.97