
Copyright 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 5, No. 4, December 2011, pp. 283-287

A Technique for Fast Process Creation Based on Creation
Location

Byungjin Kim and Youngho Ahn
Department of Electronics Computer Engineering, Hanyang University, Seoul, Korea

idangoon@gmail.com, ghduddks84@gmail.com

Ki-Seok Chung*

Department of Electronic Engineering, Hanyang University, Seoul, Korea kchung@hanyang.ac.kr

Abstract
Due to the proliferation of software parallelization on multi-core CPUs, the number of concurrently executing processes is rapidly

increasing. Unlike processes running in a server environment, those executing in a multi-core desktop or a multi-core mobile platform

have various correlations. Therefore, it is crucial to consider correlations among concurrently running processes. In this paper, we

exploit the property that for a given created location in the binary image of the parent process, the average running time of child pro-

cesses residing in the run-queue differs. We claim that this property can be exploited to improve the overall system performance by

running processes that have a relatively short running time before those with a longer running time. Experimental results verified that

the running time was actually improved by 11%.

Category: Embedded computing

Keywords: Process management; Software parallelization; Multi-core CPU

I. INTRODUCTION

Improving performance through increasing the clock speed

of a single processor core is limited by high energy consump-

tion and temperature. Thus, performance improvement utilizing

multi-core processors has been actively studied [1]. Conse-

quently, software structures should be changed to fully utilize

the multi-core processor. In other words, there have been

numerous researches on creating multiple threads in a single

application and executing them in parallel to improve perfor-

mance [2]. Therefore, the number of concurrently executing

processes is steadily increasing, and it is becoming crucial to

manage those processes effectively [3].

Process management under server environments has been

previously studied. However, unlike processes running in a

server environment, those executing in a multi-core desktop or

a multi-core mobile platform have various correlations. There-

fore, it is crucial to consider correlations among concurrently

running processes [4].

We observe that a significant number of processes are not

created directly by the user but depend on the coding style fol-

lowed by the programmer when writing an application program.

That is, there is an increasing trend that the process creation pat-

tern and the process handling characteristics are not explicitly

controlled by the user, but depend on the coding style used to

write the application program. Especially, processes that are

created and managed according to the specific style that was

used to write the application are typically created at fixed loca-

tions in the binary image of the parent process. We will show

that the location where the process is created in the binary

image of the parent process and the average running time of

child processes residing in the run-queue are strongly corre-

Received 06 July 2011, Accepted 26 August 2011

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2011.5.4.283 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 283-287

http://dx.doi.org/10.5626/JCSE.2011.5.4.283 284 Byungjin Kim et al.

lated. We will also present that correlations between the process

creation location and the average process execution time can be

utilized for efficient system management, especially for process

scheduling.

The rest of the paper is organized as follows. In Section II,

related works on the characteristics and requirements of multi-

core desktop and multi-core mobile device environments along

with the application properties running on them are presented.

In Section III, process correlations are addressed and our exper-

imental method is presented in detail. In Section IV, we analyze

our experimental results. Conclusions will follow in the final

section.

II. RELATED WORKS

There have been many researches on application properties

under a multi-core desktop environment. Research in [3] stud-

ied the degree of thread-level parallelism when applications

were executed under a multi-core desktop environment. The

results were analyzed. In [5], the authors presented that the

response time characteristics when applications request I/O

operations under a desktop environment differ from those under

a server environment. In [6], recent theoretical results for

dynamic power management of multi-core processors were

summarized. In [7] and [8], methods to estimate the worst-case

execution time of applications running on multi-core processors

were proposed.

These previous researches have either focused on analyzing

runtime characteristics that can be observed after each process is

forked, or considering only the parent-child relationship between

processes to predict and exploit processes’ runtime characteristics.

We suggest that the locations where processes are forked in

the parent processes’ binary image provide a new clue to help

analyze and predict the child processes’ runtime characteristics.

And we examine how the new clue can contribute to predicting

and exploiting the child processes’ runtime characteristics through

experiments.

III. LOCATION-BASED PROCESS MANAGEMENT

We observe that a significant number of processes are created

by the coding patterns used to write an application program.

Even though the number of concurrently executing processes

and the execution patterns are partially dependent on the system

user, they are also significantly dependent on the style in which

the programmer writes the application. Consequently, it is impor-

tant to understand how processes are created by applications,

and what characteristics are possessed by each process.

The child processes are typically created at specific locations

of the parent processes’ binary image. That is, when program-

mers write applications, they call specific library routines or

system calls to create child processes. Therefore, locations

where many child processes are created can be clearly identi-

fied. We will use the name of the binary image of the parent

process and the program counter value for the location where

the child process is created from the image. These are attached

to each child process as process attributes. We claim that the

behavioral patterns are correlated with these two attributes, and

we verify this claim experimentally. To be precise, we measure

the average execution time of child processes residing in the

run-queue, and analyze the correlation between this time and

the two attributes. Through this analysis, we devise a novel pro-

cess management method to improve the system performance.

Our experimental environment is based on Linux Kernel

2.6.31.6 and GNU Library C 2.11.2 and we modified these in

order to understand the behavior. An off-line analysis result of

the data collected from this environment is stored in a table so

that the kernel operation can refer to it. By utilizing the infor-

mation collected by the off-line analysis, the overall perfor-

mance is significantly improved.

A. Process Creation of Linux Systems

Processes are created using fork(), vfork(), and clone() sys-

tem calls in Linux systems. However, it is uncommon for appli-

cation programs to invoke these system calls directly. Instead,

these system calls are usually called indirectly via the fork(),

vfork(), and clone() library functions provided by GNU Library

C. In the Linux kernel, the do_fork() function is called to actu-

ally carry out the process creation task for the fork(), vfork()

and clone() system calls.

B. Data Collection for Process Creation Location
and The Average Execution Time

To understand the correlation between the process creation

location and the process behavior, first we need to collect the

information on the locations (i.e., program counter values)

where the child processes are created. To this end, we modified

the routines for process creation in the GNU Library C and the

Fig. 1. Process creation in Linux system.

Fig. 2. Modified process for process creation.

A Technique for Fast Process Creation Based on Creation Location

Byungjin Kim et al. 285 http://jcse.kiise.org

Linux kernel. First, we collect the return addresses that are

stored in the applications’ stack for the fork() and clone() func-

tions. Since vfork() passes the return address to the kernel, no

modification is necessary. These return addresses correspond to

the program counter values where the child process is created.

The collected return addresses are passed to the Linux kernel as

arguments for system calls, and stored in a data structure.

To pass return addresses, system call interfaces should be

changed. However, changing the interface of the original sys-

tem calls can be a very dangerous operation, which may cause

the system operation to become unstable. Therefore, we imple-

mented a new wrapper function called myfork(), so that this

wrapper function is called instead of the original one when we

collect the information. We also add a new wrapper function for

do_fork() called do_myfork(), so that the myfork() and vfork()

system calls will call the wrapper for do_fork(). Function

do_myfork() stores the collected data, which consist of the

name of the binary image of the parent process and the program

counter value indicating the location of the child process cre-

ation in the image, in the data structure. It also performs the

original function of creating processes. A simple routine is

added to the system calls fork() and clone() and function

do_fork() that enables them to print out kernel error messages

every time that the calls are invoked under exceptional circum-

stances. In this manner, the original do_fork() is called when the

calling sequence fails to follow the proposed modified process

creation path. In this case, we can identify the exceptional cases

by the printed kernel error message.

Also, we need to collect the average runtime, which is

defined as the time during which each process is residing in the

run-queue. We collect the information by modifying the process

scheduler of the Linux kernel, which has a scheduler called

completely fair scheduler (CFS). In CFS, each run-queue is

implemented using a red-black (RB) tree structure [9]. The

average execution time of each process can be obtained by com-

puting the average duration time between the time when the

process is inserted into the RB tree and the time when the pro-

cess is removed from the RB tree. The Linux kernel calls the

update_curr() function to compute the actual execution time of

the current process on the processor. In our experiment, we

modified the update_curr() function to store the execution times

in a separate data structure in addition to performing the origi-

nal function.

Using all the collected data of the binary image, the program

counter values, and the average execution times, we can com-

pute the average time that each child process resides in the run-

queue after it was created at a specific location of the binary

image of the parent process.

C. Utilization of Correlation between the Process
Creation Location and the Average Execution
Time

We claim that depending on the location of the child process

creation, the average execution time can differ significantly, and

we used the collected data to verify this property. In the Linux

scheduler, a process with a relatively short execution time is

assumed to have a more interactive property than that with a

large execution time. Hence the scheduler assigns a higher pri-

ority to such processes in order to improve the overall response

time. In reality, the CFS incorporates the actual execution time of

each process into the process priority and computes the virtual

runtime after normalization. After computing the virtual runtime,

on scheduling a process, it selects the process with the shortest

virtual runtime for execution. However, this algorithm has a limit

that even though an interactive process is created, it can only

get CPU-time if it has the smallest computed virtual runtime.

On the other hand, the proposed method in this paper is

based on an offline analysis on the average execution time. If

the location where processes are created in the binary image of

the parent process and the average running time of the child

processes residing in the run-queue are strongly correlated, we

could exploit the correlation to predict the interactivity of the

newly created child processes at each location. Thus, when

interactive processes are likely to have a shorter runtime, based

on the analysis they may be scheduled to the CPU before CFS,

thus shortening the overall response time. From our experi-

ments, we verified that such interactive processes are executed

immediately after creation, without waiting until they have the

smallest virtual runtime. Thus, the overall performance is improved.

IV. EXPERIMENTAL RESULTS

A. Data Analysis

Our experimental environment is a virtual machine environ-

ment running on a platform that consists of Intel Core i7-2600

3.40GHz, 4GB of RAM, Windows 7 (32bits). Data collection

and scheduler modification are done on Linux Kernel 2.6.31.6

and GNU Library C 2.11.2. We used a set of applications on

Firefox [10] consisting of streaming audio play, web game play,

and webpage surfing. In addition to the experiment on Firefox,

we also carried out experiments on the Make utility and Ope-

nOffice [11].

To analyze the correlation between the location of the pro-

cess creation and the average runtime, first we ran the Firefox

web browser on a Linux system after we modified the system as

explained.

Table 1 summarizes the results. The set of locations for child

process creation differs according to the running application,

and the average execution times differ according to the values

of the program counter. Also, we can verify from the case of the

binary image called run-mozilla.sh that even though a child pro-

cess is created from the same location, the average execution

time differs significantly depending on the type of task that the

web browser executes.

Next, we compiled the Linux kernel with the Make utility.

Table 2 shows the results. As in the cases of the web browser,

the average execution times differ according to the program

counter and the binary image name.

Finally, Table 3 shows the results obtained from running

OpenOffice. We ran a spreadsheet program (Calc), a 2D paint-

ing program (Draw), and a word processing program (Writer) in

OpenOffice. In the spreadsheet program, we entered some num-

bers and then calculated the average and the standard deviation

of the data. In the 2D painting program, we drew simple figures

and colored them. In the word processor program, we typed a

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 283-287

http://dx.doi.org/10.5626/JCSE.2011.5.4.283 286 Byungjin Kim et al.

short text and carried out spellchecking.

We can infer from the above results that the average execu-

tion times of the child processes differ according to the creation

location in the parent process’s binary image.

B. Performance Evaluation

This section will address how we can utilize the correlation

information to improve the overall system performance. For this

purpose, we modified the scheduler such that the process with

the shortest average runtime from the offline analysis of the

binary image and the process creation location will get CPU-

time after being assigned the highest priority immediately after

its creation.

In this experiment, we mainly used web browser executions,

since the web browser runs a variety of workloads under a sin-

gle application [12]. Experimental results show that when

streaming audio decoding and web surfing are executed concur-

rently, streaming audio decoding is finished earlier, since its

average execution time is relatively shorter.

V. CONCLUSION

As the number of concurrently executing processes on multi-

core desktops or mobile devices is rapidly increasing, it is cru-

cial to manage such concurrent processes efficiently. Unlike

processes running in a server environment, those executing in a

multi-core desktop or a multi-core mobile platform have vari-

ous correlations. Therefore, it is crucial to consider correlations

among concurrently running processes. In this paper, we exploit

the property that depending on the created location of child pro-

cesses in the binary image of the parent process, the average

running time of the child process residing in the run-queue dif-

fers. To verify this property we modified the Linux kernel and

GNU Library C, and carried out experiments. Through the

experiments, we could verify that the average execution time of

the child process may differ according to the binary image of

the parent process and the location of the child process creation.

Also we modified the kernel scheduler such that we assign a

higher priority to processes with shorter average runtime when

they are invoked at specific locations. The experimental results

show that when we execute streaming music play and web

browsing in parallel, the average execution time of the stream-

ing music play is shorter. This verifies that our proposed sched-

uling method is effective and is sufficiently accurate to achieve

overall performance improvement. Lastly, we have found addi-

tional possible correlations in the process creation locations,

and methods to exploit these additional correlations for optimiz-

ing process management. Especially, we are seeking to exploit

the child processes’ average running time according to the cre-

ated location as a workload weight of each child process in

order to calculate the effective workload of each core in multi-

core systems.

Table 1. The average execution time for process creation location on
Firefox

Test
Binary Image

Name

Program

Counter

Avg. Runtime

 (ns)

Streaming

Music

Play

run-mozilla.sh 08080b74 310871

run-mozilla.sh b77ccc9d 126086

firefox b77d6f34 160484

firefox b7820c9d 231821

Web

Game

Play

run-mozilla.sh 08080b74 2052582

run-mozilla.sh b7888c9d 39135

firefox b7892f34 1753332

firefox b76fdc9d 134240

Webpage

Surfing

run-mozilla.sh 08080b74 8546944

run-mozilla.sh b770dc9d 31877

Table 2. The average execution time for process creation location on
theMake utility

Test
Binary Image

Name

Program

Counter

Avg. Runtime

(ns)

Make

make 08050ef4 199742

make 080549e9 320698

sh 08080b74 842219

gcc 08062bc6 7253607

gcc 0804c3ab 509999

Table 3. The average execution time for process creation location on
OpenOffice

Test
Binary Image

Name

Program

Counter

Avg. Runtime

(ns)

Calc

soffice 08080b74 1083365

soffice b771dc9d 77464

scalc.bin b779797e 1334359

Draw

soffice 08080b74 659877

soffice b76e1c9d 69569

sdraw.bin b775b97e 1273092

Writer

soffice 08080b74 888827

soffice b7560c9d 62428

swriter.bin b75da97e 1309738

Table 4. Comparison of execution times between the conventional and
proposed methods

Before After

1 5.80 5.39

2 6.15 5.25

3 5.90 5.60

4 6.28 5.17

5 6.06 5.32

Average 6.04 5.35

Standard Deviation 0.17 0.15

A Technique for Fast Process Creation Based on Creation Location

Byungjin Kim et al. 287 http://jcse.kiise.org

ACKNOWLEDGEMENTS

This research was supported by the MKE(The Ministry of

Knowledge Economy), Korea, under the ITRC(Information

Technology Research Center) support program supervised by

the NIPA(National IT Industry Promotion Agency) (NIPA-

2011-C1090-1100-0010)

REFERENCES

1. S. H. Fuller and L. I. Millett, “Computing performance: game

over or next level?,” Computer, vol. 44, no. 1, pp. 31-38, 2011.

2. B. Catanzaro, A. Fox, K. Keutzer, D. Patterson, S. Bor-Yiing, M.

Snir, K. Olukotun, P. Hanrahan, and H. Chafi, “Ubiquitous paral-

lel computing from Berkeley, Illinois, and Stanford,” IEEE

Micro, vol. 30, no. 2, pp. 41-55, 2010.

3. G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner, “Evolu-

tion of thread-level parallelism in desktop applications,” Proceed-

ings of the 37th Annual International Symposium on Computer

Architecture, Saint-Malo, France, 2010, pp. 302-313.

4. H. Sutter and J. Larus, “Software and the concurrency revolu-

tion,” Queue, vol. 3, no. 7, pp. 54-62, 2005.

5. M. Zhou and A. J. Smith, “Analysis of personal computer work-

loads,” Proceedings of the 7th International Symposium on Mod-

eling, Analysis and Simulation of Computer and Telecommunication

Systems, College Park, MD, 1999, pp. 208-217.

6. T. W. Kim, “Task-level dynamic voltage scaling for embedded

system design: recent theoretical results,” Journal of Computer

Science and Engineering, vol. 4, no. 3, pp. 189-206, 2010.

7. J. Yan and W. Zhang, “Bounding worst-case performance for

multi-core processors with shared L2 instruction caches,” Jour-

nal of Computer Science and Engineering, vol. 5, no. 1, pp. 1-

18, 2011.

8. Y. Liu and W. Zhang, “Bounding worst-case data cache perfor-

mance by using stack distance,” Journal of Computer Science

and Engineering, vol. 3, no. 4, pp. 195-215, 2009.

9. R. Love, “The Linux scheduling implementation,” Linux Kernel

Development, 3rd ed., R. Love, Ed., Upper Saddle River, NJ:

Addison-Wesley, 2010, pp. 50-61.

10. “Firefox,” http://www.mozilla.org/.

11. “OpenOffice.org,” http://www.openoffice.org/.

12. A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, “Web

browser as an application platform: the lively Kernel experi-

ence,” Proceedings of the 34th Euromicro Conference on Soft-

ware Engineering and Advanced Applications, Parma, Italy,

2008, pp. 293-302.

Byungjin Kim

Byungjin Kim received his BS in Computer Science and Engineering from Hanyang University, Seoul, Korea in 2009.
Since 2010, he has been pursuing an MS course at Hanyang University, Seoul, Korea. His research interests include
software parallelization, operating systems, and embedded multi-core architecture.

Youngho Ahn

Youngho Ahn received his MS in Electronics and Computers Engineering from Hanyang University, Seoul, Korea in 2010.
Since 2010, he has been pursuing a PhD course at Hanyang University, Seoul, Korea. His research interests include low
power embedded system design, parallelization, virtualization, and embedded multi-core architecture.

Ki-Seok Chung

Ki-Seok Chung received his BE in Computer Engineering from Seoul National University, Seoul, Korea in 1989, and his
PhD in Computer Science from University of Illinois at Urbana-Champaign in 1998. He was a Senior R&D Engineer at
Synopsys, Inc. in Mountain View, CA from 1998 to 2000, and was a Staff Engineer at Intel Corp. in Santa Clara, CA from
2000 to 2001. He also worked as an Assistant Professor at Hongik University, Seoul, Korea from 2001 to 2004. Since 2004,
he has been an Associate Professor at Hanyang University, Seoul, Korea. His research interests include low power
embedded system design, multi-core architecture, image processing, reconfigurable processors and DSP design, SoC-
platform based verification and system software for MPSoC.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

