
Copyright 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 5, No. 4, December 2011, pp. 331-337

Data Firewall: A TPM-based Security Framework for Protecting
Data in Thick Client Mobile Environment

Wooram Park and Chanik Park*

Department of Computer Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea

wizrampa@postech.ac.kr, cipark@postech.ac.kr

Abstract
Recently, Virtual Desktop Infrastructure (VDI) has been widely adopted to ensure secure protection of enterprise data and provide

users with a centrally managed execution environment. However, user experiences may be restricted due to the limited functionalities

of thin clients in VDI. If thick client devices like laptops are used, then data leakage may be possible due to malicious software

installed in thick client mobile devices. In this paper, we present Data Firewall, a security framework to manage and protect security-

sensitive data in thick client mobile devices. Data Firewall consists of three components: Virtual Machine (VM) image management,

client VM integrity attestation, and key management for Protected Storage. There are two types of execution VMs managed by Data

Firewall: Normal VM and Secure VM. In Normal VM, a user can execute any applications installed in the laptop in the same manner

as before. A user can access security-sensitive data only in the Secure VM, for which the integrity should be checked prior to access

being granted. All the security-sensitive data are stored in the space called Protected Storage for which the access keys are managed by

Data Firewall. Key management and exchange between client and server are handled via Trusted Platform Module (TPM) in the

framework. We have analyzed the security characteristics and built a prototype to show the performance overhead of the proposed

framework.

Category: Ubiquitous computing

Keywords: Trusted platform module; Data firewall; Virtual desktop infrastructure; Virtualization

I. INTRODUCTION

IT administrators have to handle various security issues, such

as security-sensitive data leakage by malicious insiders, updat-

ing the secure system, and installing security patches. Accord-

ing to the most recent CSI Computer Crime and Security

Survey [1], respondents have experienced the following types

of attacks; malware infection (67%), laptop theft (34%), insider

abuse (25%), unauthorized system access (26%) and unautho-

rized access or privilege escalation by insider (13%) in 2010

(Table 1).

Virtual Desktop Infrastructure (VDI) [2, 3] is one of the solu-

tions to these issues. In VDI, the execution images including the

OS and libraries are managed centrally in a server and each exe-

cution image (a.k.a., Virtual Machine [VM] image) is executed

on a virtual machine in the server. Each client will access its

own virtual machine running on the server through remote

desktop protocols like MS RemoteFX [4], Citrix ICA [5], and

VMWare PCoIP [6]. VDI assumes a thin client device model,

which has limited functionalities, so the user performance of the

VDI is highly dependent on the remote desktop protocol sup-

ported. There are two important benefits of VDI: central man-

agement of all client VMs and storage of each client’s security-

sensitive data in a server. All the client VM images are managed

centrally in a server, thus enabling uniform installation of secu-

rity patches etc. In addition, a user is not allowed to store any

data in a local storage of a client device, but must store it in the

remote storage of the server. Accordingly, VDI has been widely

Received 16 July 2011, Accepted 26 August 2011

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2011.5.4.331 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 331-337

http://dx.doi.org/10.5626/JCSE.2011.5.4.331 332 Wooram Park and Chanik Park

adopted to centrally manage security-sensitive data, thus

enabling secure protection of data. In order to overcome the

limited functionalities of a thin client, VDI usually is based on

thick client devices such as laptops.

However, it is still possible that the data stored in the central

storage can be leaked by malicious insiders (e.g. server admin-

istrators), because they can have privileged control of the cen-

tral server and storage. Moreover, data leakage could occur due

to malicious software installed in mobile client devices and

unauthorized access to the central server.

In this paper, we present Data Firewall, a security framework

that protects security-sensitive data based on Trusted Platform

Module (TPM) [7] and client-side virtualization. Data Firewall

adopts remote attestation [8, 9] and Protected Storage [10]

techniques based on TPM to prevent data leakage by malicious

insiders, although they have privileged control. There are two

types of execution domains defined in Data Firewall: Normal

VM and Secure VM. In Normal VM, a user can execute any

applications installed in the laptop in the same manner as

before. A user can access security-sensitive data only in the

Secure VM, for which the integrity (i.e., virtual machine image)

should be checked in advance. All the security-sensitive data

are stored in Protected Storage, for which the access keys are

managed by TPM.

II. BACKGROUND

In this section, we provide a brief survey of TPM, the integ-

rity measurement approach for trusted computing in a virtual-

ization environment, and VDI, which are used to develop Data

Firewall.

TPM is a security chip, proposed by the Trusted Computing

Group (TCG) [11]. It supports capabilities such as remote attes-

tation and sealed storage. Remote attestation creates hash

chains of the hardware and software platform configuration at

boot time. This allows a Trusted Third Party (TTP) [12] to ver-

ify that the platform environment has not been changed. Sealed

storage provides support for data encryption with a platform

state in the TPM, called sealing. The TPM must be in the cor-

rect state in order for the data to be decrypted, called unsealing.

Also, the TPM supports the TPM Attestation Integrity Key

(AIK), which is a private key (AIK−1) stored inside the TPM. It

is only used to sign the current values of the TPM’s Platform

Configuration Registers (PCRs). A challenger can get the AIK

public key from the AIK certificate.

The TPM contains a volatile storage for protecting data and

keys entrusted to it. This storage holds currently used keys, but

it is very small, thus unused keys are encrypted with the storage

key and stored in a persistent storage, such as a hard disk. The

storage key is encrypted with the Storage Root Key (SRK),

which is generated during the process of taking logical owner-

ship of the platform and is embedded in the TPM. Fig. 1 shows

the TPM Key hierarchy.

The Terra [13], proposed by Stanford University, was the

first approach that tried to adapt attestation and VM identity in a

virtualization environment for trusted computing. It provided a

novel concept for well-defined remote attestation and authenti-

cation, and it involved building a certificate chain using TPM.

Moreover, Terra defined two VM concepts, open-box VM and

closed-box VM. Open-box VMs can run commodity operating

systems and customize the appearance of today’s general-pur-

pose platforms. Closed-box VMs provide the functionality of

implementation on a dedicated closed platform. Hypervisor pro-

tects the privacy and integrity of a closed-box VM’s contents,

and the closed-box VM can only start to run after attestation.

In VDI, operating systems and applications are running

inside virtual machines that reside on servers. Operating sys-

tems inside VMs are referred to as virtual desktops. Users

access virtual desktops and applications from a thin client as a

terminal. They use applications as if they were loaded on local

Table 1. Type of attacks experienced

Type of attack
2009

(%)

2010

(%)

Malware infection 64 67

Insider abuse 30 25

Unauthorized access or privileged escalation by insider 15 13

Laptop or mobile hardware theft or loss 42 34

Theft of or unauthorized access to system 30 26

Fig. 1. Trusted platform module (TPM) key hierarchy. RSA: Rivest Shamir
Adelman.

Fig. 2. Virtual desktop infrastructure (VDI). VM: virtual machine.

Data Firewall: A TPM-based Security Framework for Protecting Data in Thick Client Mobile Environment

Wooram Park and Chanik Park 333 http://jcse.kiise.org

systems, but the difference is that they are centrally managed.

Desktop administrative and management tasks are significantly

reduced. Applications can be quickly added, upgraded and

patched. Also, data is stored in the central storage, thus data is

easier to manage [14]. Fig. 2 shows the simple VDI architecture.

III. DATA FIREWALL FRAMEWORK

A. Assumptions and Threat Model

Assumptions: We assume that the target client and server are

equipped with the TCG’s hardware (i.e., BIOS with Core Root

of Trust for Measurement [CRTM] and, TPM or Mobile Trusted

Module [MTM] [15, 16]). Thus, target client and server can be

booted through TCG’s trusted boot process. Also, we assume

that Kernel Virtual Machine (KVM) [17] is installed in each cli-

ent or LiveDF.

Threat Model: Our framework aims to protect security-sensi-

tive data in thick client mobile devices or central servers from

malicious insiders and outside attackers. We assume that mali-

cious insiders and attackers can use a privilege to access the

central storage and the client root anytime. Furthermore, they

can mount attacks via remote attestation and compromise the

policy of Secure VM for access to the protected storage with the

root privilege. Finally, a user has various client device types

such as desktop, laptop and other mobile devices. We assume

that the user can lose their mobile devices or that attackers can

steal them in order to access security-sensitive data.

B. Architecture Design

Fig. 3 shows the architecture of Data Firewall. The server of

Data Firewall has Data Firewall Key Manager (DFKM), Pro-

tected Storage, a client information database, and TPM. DFKM

supports VM image management, remote attestation, and key

management for Protected Storage. The server TPM creates a

Protected Key for an encryption key of each Protected Storage.

The client of Data Firewall is booted from LiveDF, which is a

bootable mobile device, and it has all the Data Firewall compo-

nents of the client. The client TPM supports a trusted boot pro-

cess with DF attestation components and Integrity Measurement

Architecture (IMA) [9]. Furthermore, it stores the Protected

Key migrated from the server TPM. After remote attestation, a

user can access the encrypted data with the Protected Key

through DF Encryption Module in Secure VM. Also, the user can

execute any applications installed in the client in Normal VM.

We discuss how to build the trusted computing environment

in Data Firewall, and how to access security-sensitive data pro-

tected from malicious insiders and attackers.

1) Registration Process: A user has to create a LiveDF

device through the user registration process of DFKM when

using Data Firewall for the first time. DFKM registers a user’s

information (i.e., user ID, password, physical LiveDF ID, and

LiveDF Key) with the client information database. Moreover,

DFKM creates the user’s Protected Key and LiveDF Key using

the server TPM. Protected Key is a unique key for each Pro-

tected Storage. It is used to encrypt and decrypt the data in Pro-

tected Storage through the DF Encryption Module. Finally,

DFKM installs Data Firewall components and a LiveDF key to

the LiveDF. The LiveDF key is used for matching between the

user, client and LiveDF. The user’s client is booted from the

LiveDF the first time, and then the registration service is acti-

vated. We define it as the client registration process. The regis-

tration service gathers the client’s initial status (i.e., the

measurement log and Platform Configulation Register [PCR]

values in TPM). This information is created by CRTM, a trusted

bootloader [18, 19] and IMA through a trusted boot process. We

measure the Linux kernel, KVM, initial ramdisk, QEMU [20,

21], and DF attestation components for building TCB. We

extend PCRs in the client TPM with these measurements and

make the measurement log. The registration service sends the

registration request to DFKM and gets a 160-bit nonce value

(N). The service uses TPM Quote commands to create an

DFResponse (Equation 1) and sends this response to DFKM,

which decrypts an encrypted ID message in this response with

LiveDF Key and, attests LiveDF ID and user ID/PW. Finally,

DFKM registers this information to the user’s information data-

base and uses it for verifying the client next time.

DFResponse = SigAI K−1 {N|PCR values},

Measurement Log, AIKcert,

{User ID/PW, LiveDF ID}LiveDF Key (1)

2) Attestation Process: After the registration process, the

attestation service is activated at the next boot time. We define

this as client attestation. The attestation service gathers the cli-

ent statuses during boot time. This is similar to the client regis-

tration process. The service sends the attestation request to

DFKM and gets a 160-bit nonce value. It uses the TPM Quote

command to create an DFResponse (Equation 1) and sends this

response to DFKM, which verifies the current client status by

comparing it with the initial client status. If the client is trusted,

Fig. 3. The overview of the data firewall (DF) architecture. Trusted
computing base (TCB) is shown in gray. The host system is booted from
LiveDF. TPM: trusted platform module, IMA: integrity measurement
architecture, KVM: Kernel virtual machine.

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 331-337

http://dx.doi.org/10.5626/JCSE.2011.5.4.331 334 Wooram Park and Chanik Park

then DFKM sends the result, a DF policy for Secure VM, and a

request for TPM Key Migration, which is the process of migrat-

ing a key from one TPM to another. The user’s Protected Key is

migrated from the server TPM to the client TPM. Fig. 4 shows

our TPM key tree. SRK is the root of the TPM key and never

leaves the TPM (Non-Migratable Key). We create a Roaming

Key (RK) pair, which is a child key of SRK that is migratable

and asymmetric. An RK pair is encrypted by the public SRK,

and stored in a persistent storage. Furthermore, we create a Pro-

tected Key, which is a child key of RK that is migratable and

symmetric. The Protected Key is encrypted by the public RK,

and stored in a persistent storage.

Fig. 5 shows the Protected Key Migration process. After

receiving the request, 1) the attestation service creates a TPM

key pair, called the TPM Session Key Pair; 2) the service sends

the TPM Session Public Key to DFKM; 3) DFKM loads the RK

pair and the RK certificate from the server TPM; 4) DFKM

rewraps the RK pair and the certificate with the TPM Session

Public Key using the server TPM, and then they are sent; 5) The

attestation service decrypts this data with the TPM Session Pri-

vate Key using the client TPM and registers the RK pair with

the client TPM. After RK migration; 6-8) the attestation service

starts the Protected Key migration process between the server

TPM and client TPM in the same manner.

After the Protected Key Migration process, the attestation

service sets the network filter with the DF policy. Finally, it runs

a Normal VM and a Secure VM with the DF policy using KVM

and QEMU.

3) Virtual Machine Runtime Integrity Check (VRIC): We

need to ensure that we run a Secure VM with a trusted DF pol-

icy. We make a VRIC module and add some codes for creating a

link between QEMU and VRIC to the initialization phase of

QEMU. VRIC is similar to the attestation service, but it is only

activated at the running VM. Secure VM is started, and then

QEMU enters the initialization phase. In this phase, QEMU

checks the VM options and sets the configuration of the VM.

Before setting up the configuration of the VM, QEMU sends

the VM options to the VRIC module and waits until the comple-

tion of attestation. After receiving the attestation request from

QEMU, VRIC sends a request to DFKM and gets a 160-bit

nonce. Next, VRIC extends PCRs in the client TPM with the

DF policy of Secure VM and the configuration of the network

filter. VRIC uses the TPM Quote command to create a VRIC

response (Equation 2) and sends this response to DFKM.

VRICResponse = SigAI K−1 {N|PCR values},

Measurement Log, AIKcert,

{DF Policy, Network Filter Configuration}LiveDF Key (2)

DFKM makes a comparison between the current and initial

client status. Furthermore, it compares the current client DF

policy and network filter configuration to the initial configura-

tion in the client information database. The DF policy and net-

work filter configuration includes the VM configuration, such

as allowed networks and devices for VM. If the current status is

trusted, then DFKM sends the result and VRIC returns a suc-

cess message to QEMU. This process is shown in Fig. 6.

4) Protected Storage: In Normal VM, the VM image is

booted from the operating system pre-installed in a client

device, and a user can execute any applications installed in the

device. All the executions in Normal VM are based on the phys-

ical local storage. In Secure VM, the VM image is booted from

a VM image stored in the Data Firewall server for a specific cli-

ent. A user in Secure VM can access the security-sensitive data

only after the VM image is attested according to the DF policy

and VRIC by the Data Firewall server. As previously explained,

all the security-sensitive data are encoded by the DF Encryption

Fig. 4. Data firewall trusted platform module (TPM) key tree. SRK:
storage root key, RK: roaming key.

Fig. 5. Protected key migration. TPM: trusted platform module, DF: data
firewall.

Fig. 6. The VM runtime integrity check (VRIC) process. DF: data firewall,
VM: virtual machine, KVM: Kernel VM.

Data Firewall: A TPM-based Security Framework for Protecting Data in Thick Client Mobile Environment

Wooram Park and Chanik Park 335 http://jcse.kiise.org

Module and stored in the space called Protected Storage. A

symmetric key called Protected Key is created for a client or a

group of clients by the Data Firewall server, and the key is dis-

tributed to the DF Encryption Module of each legal client. Key

management and distribution are based on TPM both in clients

and the server. This process is shown in Fig. 7.

IV. ANALYSIS OF DATA FIREWALL

A. Security Characteristics

We evaluate how our framework achieves the goals of pro-

tecting security-sensitive data from various types of attacks

experienced (Table 1).

1) Malware Infection and Unauthorized System Access:

First, we ensure that the adversary cannot compromise the TCB

of our framework to influence its output. The Root of Trust is

started from the CRTM in our framework. The Linux/KVM, DF

attestation components, and QEMU are measured during the

TCG’s trusted boot sequence. The integrity of each component

is extended to TPM’s PCRs. Their integrity can be attested

using the TPM’s standard attestation process. Thus, any attempt

to compromise the TCB of our framework will be detectable,

regardless of the root privilege of the adversary. Moreover, this

can prevent malwares installed in mobile devices used as Data

Firewall clients. Because malwares should compromise the

TCB of our framework, they would be detectable during the

attestation process. We also ensure that the adversary cannot

compromise the LiveDF. This has all the Data Firewall compo-

nents of the client and LiveDF Key, thus it has to be protected

from any attacks. LiveDF has a unique LiveDF ID and LiveDF

Key. LiveDF ID is a physical device ID, such as information

about the USB buses in the system. LiveDF Key is created by

the server TPM and it is also unique. We register this informa-

tion with the user information database with the initial status of

the client in the user registration process. Thus any attempt to

compromise LiveDF will be detectable during the attestation

process. Finally, we can detect the attack compromising DF pol-

icy and the configuration of the network filter also. The DF pol-

icy and the configuration of the network filter are attested by

VRIC when starting a VM. VRIC extends PCRs in the client

TPM with this information in order to ensure that the adversary

cannot compromise this information. DFKM can attest whether

the configuration of the client is trusted or not. Additionally,

VRIC gathers this information and reports it to DFKM periodi-

cally in order to prevent the Time-of-Check-to-Time-of-Use

(TOCTTOU) attack. If the result of the request is false or the

connection is closed due to various problems, then the VRIC

stops the Secure VM immediately.

2) Insider Abuse and Mobile Hardware Theft: We can pro-

tect security-sensitive data in Protected Storage from malicious

insiders and outside attackers. Each block of Protected Storage

is encrypted by Protected Key and a user can only access the

data through DF Encryption Module. The adversary cannot gain

access to this key, because it is managed by the TPM and can

only be used after the attestation process. We also use the TPM

Key Migration technique for protecting against Protected Key

leakage on the network. If a user loses their laptop or other

mobile devices are used as Data Firewall clients, the adversary

cannot access the data, because the Protected Key is only

migrated from the server TPM after the attestation process at

every boot time. Moreover, a malicious insider can gain unau-

thorized access to the Data Firewall server. However, Protected

Storage can only be accessed through DF Encryption Module

with Protected Key, which can only be obtained using a trusted

Data Firewall client. Thus any attempt to leak security-sensitive

data and Protected Key can be prevented.

B. Performance Evaluation

We implemented a Data Firewall prototype on a thick client

mobile device, a DFKM, Protected Storage server, and a USB

device for LiveDF. A laptop has a 2.4 GHz Intel Core 2 Duo

processor with Intel-VT support and 3 GB RAM for a thick cli-

ent mobile device. Windows XP is installed on this mobile

device for a Normal VM. A server has three 2.83 GHz Intel

Xeon processors, 3 GB RAM, and 1 TB hard-disk. LiveDF is a

16 GB USB device. We use 2.6.35.12 Linux/KVM with IMA as

the target hypervisor and 0.14.0 QEMU. A Normal VM and a

Secure VM consists of Windows XP, one vCPU, and 1 GB

RAM. These systems are connected over a 100 Mb Ethernet

switch and an 802.11g wireless access point, because a user’s

mobile devices or desktops are connected to a wired/wireless

network in order to access security-sensitive data in their enter-

prise.

We evaluate three aspects of Data Firewall’s performance

overhead: 1) the boot time of Data Firewall, 2) the performance

overhead of VRIC, and 3) the performance overhead of Pro-

tected Storage on Secure VM.

1) Boot Time: We measure the boot time of Data Firewall

using BootChart [22]. We examine three cases, kernel booting

without IMA and the attestation service, with only IMA, and

with IMA and the attestation service. Fig. 8 shows the experi-

Fig. 7. Protected storage. A user in secure virtual machine (VM) can
access the security-sensitive data. A user in Normal VM can only access the
local storage and cannot access the secure area (dash box). DF: data
firewall, KVM: Kernel VM, TPM: trusted platform module.

Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 331-337

http://dx.doi.org/10.5626/JCSE.2011.5.4.331 336 Wooram Park and Chanik Park

mental results. The average boot time is calculated ten times.

The first measurement shows the time needed to boot the host

system. The second measurement shows the performance over-

head of IMA. The third measurement shows the performance

overhead of the attestation service in Data Firewall. The attesta-

tion service consists of three components: remote attestation,

Protected Key migration, and Protected Storage mount. The

remote attestation and Protected Key migration techniques have

high performance overhead, because they use various TPM

commands, such as TPM Quote. However, they are background

processes, thus a user can access a user’s client during these

processes. Measurements in both wired and wireless networks

are almost identical, because the size of attestation messages

and Protected Key between the client-server is small.

2) The Performance Overhead of VRIC: VRIC is only acti-

vated when starting a VM. The VM starts to run, and then VRIC

gathers the current client status. This is similar to the remote

attestation process of the attestation service. The experimental

results indicate that the performance overhead of VRIC is 8.4912

seconds on average. This performance overhead only affects the

initialization phase of VM, but not the VM running time. There-

fore, a user can execute applications or access data with almost

the same performance in the virtualization environment.

3) The Performance Overhead of Protected Storage: We

measure the performance overhead of Protected Storage in the

Secure VM using IOMeter [23]. We compare the results of run-

ning the benchmark on the Secure VM with Protected Storage

and with iSCSI network storage. We compare our secure stor-

age system with other types of network storage, such as iSCSI,

because we assume that Protected Storage is located on a cen-

tral server. In this experiment, Protected Storage in the central

server is based on iSCSI. Fig. 9 shows the measured results in

terms of average I/O response time for the IOMeter benchmark

with 100% random I/Os and 8 outstanding I/Os per target. Pro-

tected Storage has a performance overhead, because every

block is encrypted and decrypted with Protected Key. However,

if the performance difference is less than 10%, this constitutes

low performance overhead.

V. CONTRIBUTION

Our contribution in this work is to develop a security frame-

work for protecting security-sensitive data from many types of

attacks. IT administrators can handle various security issues

even if the attacker is a malicious insider in this framework.

Despite the fact that our system sets a strong security policy for

a user’s client, the user can execute any applications installed in

a user’s client in the same manner as before in this framework.

VI. CONCLUSION

In this paper, we presented Data Firewall, a TPM-based secu-

rity framework Data Firewall to centrally manage VM images

and protect security-sensitive data in mobile environments.

The Data Firewall is based on the three major functional

components of Protected Storage, remote VM image attestation,

and key management/distribution protocol for TPM. We have

analyzed the security features of the proposed framework and

evaluated the execution overhead through a prototype.

In summary, the proposed framework is shown to prevent

data leakage by any type of attack including a malicious

insider’s attack using TPM capabilities such as remote attesta-

Fig. 8. Average boot time (sec). This is calculated ten times. IMA: integrity measurement architecture.

Fig. 9. Average I/O response time comparison for 33% writes and 67%
reads of IOMeter benchmark.

Data Firewall: A TPM-based Security Framework for Protecting Data in Thick Client Mobile Environment

Wooram Park and Chanik Park 337 http://jcse.kiise.org

tion and key management. Moreover, it has low execution over-

head, thus ensuring its practicality in a real-world situation.

ACKNOWLEDGEMENTS

This research was supported by the Ministry of Knowledge

Economy (MKE), Korea, under the Information Technology

Research Center (ITRC) support program supervised by the

National IT Industry Promotion Agency (NIPA) (NIPA-2011-

C1090-1131-0009), and POSCO.

REFERENCES

1. R. Richardson, CSI Computer Crime and Security Survey 2010/

2011, New York, NY: Computer Security Institute, 2011.

2. Citrix Systems Inc., “XenDesktop,” http://www.citrix.com/xendesk-

top.

3. VMware Inc., “VMware View 5,” http://www.vmware.com/prod-

ucts/view/overview.html.

4. Microsoft, “Windows Server 2008R2 Remote Desktop Services

Features,” http://www.microsoft.com/windowsserver2008/en/us/rds-

remotefx.aspx.

5. Boca Research Inc., Citrix ICA Technology Brief, Boca Raton,

FL: Boca Research Inc., 1999.

6. VMware Inc., VMWare View 4 with PCoIP, 2009.

7. Trusted Computing Group, “Trusted Platform Module,” http://

www.trustedcomputinggroup.org/developers/

trusted_platform_module.

8. B. Kauer, “OSLO: improving the security of trusted computing,”

Proceedings of 16th USENIX Security Symposium on USENIX

Security Symposium, Boston, MA, 2007, pp. 1-9.

9. R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and

implementation of a TCG-based integrity measurement architec-

ture,” Proceedings of the 13th Conference on USENIX Security

Symposium, San Diego, CA, 2004, pp. 16-16.

10. J. Choi, W. Park, and C. Park, “A framework of secure access to

iscsi network storage based on TPM,” Proceedings of the 2009

Fall Conference on Korean Institute of Information Scientists and

Engineers, Seoul, Korea, 2009, pp. 5-9.

11. Trusted Computing Group, http://www.trustedcomputinggroup.org/.

12. “Trusted third party,” http://en.wikipedia.org/wiki/Trusted_third_party.

13. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,

“Terra: a virtual machine-based platform for trusted computing,”

ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp.

193-206, 2003.

14. VMware Inc., VMware View 3: Virtual Desktop Infrastructure

White Paper. Palo Alto, CA: VMware Inc., 2008.

15. Trusted Computing Group, TCG Mobile Trusted Module Specifi-

cation Version 0.9 Revision 1, Beaverton, OR: Trusted Comput-

ing Group, 2006.

16. J. E. Ekberg and M. Kylanpaa, Mobile Trusted Module (MTM):

An Introduction, Helsinki, Finland: Nokia Research Center, 2007.

17. A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:

the Linux virtual machine monitor,” Proceedings of the Linux

Symposium, Ottawa, Canada, 2007, pp. 225-230.

18. “GRUB TCG Patch to support Trusted Boot,” http://trou-

sers.sourceforge.net/grub.html.

19. H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer, S. Mun-

etho, S. Yoshihama, and T. Nakamura, Trusted Platform on

Demand (TPod). Research Report RT0564, Kanagawa, Japan:

IBM Japan, Ltd., 2004.

20. F. Bellard, “QEMU, a fast and portable dynamic translator,” Pro-

ceedings of the Annual Conference on USENIX Annual Techni-

cal Conference, Anaheim, CA, 2005, pp. 41-46.

21. I. Habib, “Virtualization with KVM,” Linux Journal, no. 166, p.

8, 2008.

22. Z. Mahkovec, “Bootchart,” http://www.bootchart.org/.

23. J. Sievert, “Iometer: The I/O Performance Analysis Tool for Serv-

ers,” http://www.intel.com/design/servers/devtools/iometer/index.htm.

Wooram Park

Wooram Park received his B.S. degree in Computer Science and Engineering from Korea University, Korea in 2006. He is
currently a M.S. & Ph.D. candidate in Computer Science and Engineering at POSTECH in Korea.

Chanik Park

Chanik Park received his B.S. degree in Electronics Engineering from Seoul National University, Korea in 1983,his M.S
degree from Electronics and Electrical Engineering (Computer Engineering) from KAIST, Korea in 1985, and his Ph. D.
degree in Electronics and Electrical Engineering (Computer Engineering) from KAIST, Korea in 1988. He has been a
professor in Computer Science and Engineering at POSTECH in Korea since 1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

