DOI QR코드

DOI QR Code

Effect of Low Dose γ-Irradiation on the Fate and Cell Envelope of Bacillus cereus, Escherichia coli, and Salmonella Typhimurium

  • Mtenga, Adelard B. (Division of Applied Life Science (BK 21 program), Gyeongsang National University) ;
  • Kassim, Neema (Division of Applied Life Science (BK 21 program), Gyeongsang National University) ;
  • Lee, Won-Gyeong (Division of Applied Life Science (BK 21 program), Gyeongsang National University) ;
  • Heo, Rok-Won (Division of Applied Life Science (BK 21 program), Gyeongsang National University) ;
  • Shim, Won-Bo (The College of Human Sciences, Nutrition, Food and Exercise Sciences, Florida State University) ;
  • Yoon, Yohan (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Chung, Duck-Hwa (Division of Applied Life Science (BK 21 program), Gyeongsang National University)
  • Received : 2011.10.26
  • Accepted : 2011.11.18
  • Published : 2011.12.31

Abstract

This study investigated the effect of low dose ${\gamma}$-irradiation on the damage of the cell envelopes and antibiotic sensitivity profiles of Bacillus cereus, Escherichia coli, and Salmonella Typhimurium. The bacteria suspension in tryptic soy broth was exposed to the ${\gamma}$-irradiation doses of 0, 1, 1.5, 3, and 5 kGy, and then stored at $0^{\circ}C$ for 24 h. A viability test, an antimicrobial sensitivity profile, and an electron microscopy were performed to observe the effects due to ${\gamma}$-irradiation treatment. B. cereus could survive the ${\gamma}$-irradiation up to 5 kGy while E. coli and S. Typhimurium were all deactivated at 1.5 kGy and 5 kGy, respectively. At 5 kGy, the cell count of B. cereus was significantly reduced, and the survived bacteria cells retained their important features. There were no significant changes observed in the antimicrobial sensitivity profile (p>0.05) for the recovered bacteria after irradiation treatment. Low dose ${\gamma}$-irradiation below 3 kGy was found to be insufficient to achieve decontamination of B. cereus and S. Typhimurium. Cell envelope damage and deactivation of different bacteria did not occur in the same manner; thus, deferent doses of ${\gamma}$-irradiation may be required for deactivation of different bacteria.

Keywords

References

  1. Andrews, H. L. and Baumler, A. J. (2005) Salmonella species. In: Foodborne pathogens microbiology and molecular biology. Fratamico, P. M., Bhunia, A. K., and Smith, J. L. (eds) Caister Academic Press, Norfolks, UK, pp. 327-340.
  2. Bauer A. W., Kirby, W. M. M., Sherris, J. C., and Turk, M. (1966) Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 45, 493-496.
  3. Bryan, F. L. and Doyle, M. P. (1995) Health risks and consequences of Salmonella and Campylobacter jejuni in raw poultry. J. Food Prot. 58, 326-344.
  4. Chung, H. J., Lee, N. Y., Jo, C., Shin, D. H., and Byun, M. W. (2007) Use of gamma irradiation for inactivation of pathogens inoculated into Kimbab, steamed rice rolled by dried laver. Food Cont. 18, 108-112. https://doi.org/10.1016/j.foodcont.2005.08.013
  5. D'Aoust, J.-Y. (1997) Salmonella species. In: Food Microbiology Fundamentals and Frontiers. Doyle, M. P., Beuchat, L. R., and Montville, T. J. (eds) ASM Press, Washington, DC, pp. 129-158.
  6. Frappaolo, P. J. and Guest, G. B. (1986) Animal feeds penicillin and other antibacterial drugs in regulatory status of tetracyclines. J. Agric. Sci. 62, 86-91.
  7. Frederick, A. and Huda, N. (2011) Salmonellas, poultry house environment and feeds. J. Anim. Vet. Adv. 10, 679-685. https://doi.org/10.3923/javaa.2011.679.685
  8. Grant, I. R. and Patterson, M. F. (1992) Sensitivity of foodborne pathogens to irradiation in the components of a chilled ready meal. Food Microbiol. 9, 95-103. https://doi.org/10.1016/0740-0020(92)80017-X
  9. Granum, P. E. and Lund, T. (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157, 223-228. https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  10. Halablab, M. A., Sheet, I. H., and Holail, H. M. (2011) Microbiological quality of raw vegetables grown in Bekaa Valley, Lebanon. Am. J. Food Technol. 6, 129-139. https://doi.org/10.3923/ajft.2011.129.139
  11. Hanning, I. B., Nutt, J. D., and Ricke, S. C. (2009) Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. Foodborne pathog. 6, 635-648. https://doi.org/10.1089/fpd.2008.0232
  12. Heaton, J. C. and Jones, K. (2008) Microbial contamination of fruit and vegetables and the behavior of enteropathogens in the phyllosphere: a review. Appl. Microbiol. 104, 613-626. https://doi.org/10.1111/j.1365-2672.2007.03587.x
  13. Jo, C., Lee, N. Y., Kang, H. J., Shin, D. H., and Byun, M. W. (2004) Inactivation of food borne pathogens in marinated beef rib by ionizing radiation. Food Microbiol. 21, 543-548. https://doi.org/10.1016/j.fm.2003.11.005
  14. Johnston, L. M., Jaykus, L. A., Moll, D., Martinez, M. C., Anciso, J., Mora, B., and Moe, C. L. (2005) A field study of the microbiological quality of fresh produce. J. Food Prot. 68, 1840-1847.
  15. FAO/IAEA/WHO (Food and Agriculfure Organization/International Atomic Energy Agency/World Health Organization). Study Group on High-Dose Irradiation (Wholesomeness of Food Irradiated with Doses above 10 kGy). Wholesomeness of food irradiated with doses above 10 kGy: report of a Joint FAO/IAEA/WHO Study Group. (WHO technical report series: 890), Geneva, Switzerland. Available from: http://www.who.int/foodsafety/publications/fs_management/en/irrad.pdf. Accessed Jan. 30, 2011.
  16. Kim, H.-J., Ham, J.-S., Lee, J.-W., Kim, K., Ha, S.-D., and Jo, C. (2010) Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses. Radiat. Phys. Chem. 79, 731-734. https://doi.org/10.1016/j.radphyschem.2009.12.016
  17. Kim, H. J., Lee, D. S., and Paik, H. D. (2004) Characterization of Bacillus cereus isolates from raw soybean sprouts. J. Food Prot. 67, 1031-1035.
  18. Kim, J. B., Jeong, H. R., Park, Y. B., Kim, J. M., and Oh, D. H. (2010) Food Poisoning Associated with Emetic-Type of Bacillus cereus in Korea. Foodborne pathog. Dis. 7, 555-563. https://doi.org/10.1089/fpd.2009.0443
  19. Kiser, J. S. (1976) A perspective on the use of antibiotics in animal feeds. J. Anim. Sci. 42, 1058-1072.
  20. Kotiranta, A., Lounatmaa, K., and Haapasalo, M. (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microb. Infect. 2, 189-194. https://doi.org/10.1016/S1286-4579(00)00269-0
  21. Kramer, J. M. and Gilbert, R. J. (2005) Bacillus cereus and other Bacillus. In: Food borne pathogens microbiology and molecular biology. Fratumico, P. M., Bhunia, A. K., and Smith, J. L. (eds) Caister Academic Press, Norfolks, UK, pp. 409-419.
  22. Kunin, C. M. (1993) Resistance to antimicrobial drugs: a worldwide calamity. Ann. Intern. Med. 118, 557-561. https://doi.org/10.7326/0003-4819-118-7-199304010-00011
  23. Lee, N. Y., Jo, C., Shin, D. H., Kim, W. G., and Byun, M. W. (2006) Effect of $\gamma$-irradiation on pathogens inoculated into ready-to-use vegetables. Food Microbiol. 23, 649-656. https://doi.org/10.1016/j.fm.2005.12.001
  24. Lefebvre, N., Thibault, C., and Charbonneau, R. (1992) Improvement of shelf-life and wholesomeness of ground beef by irradiation 1. Microbial aspects. Meat Sci. 32, 203-213.
  25. Mendonca, A. F., Romero, M. G., Lihono, M. A., Nannapeneni, R., and Johnson, M. G. (2004) Radiation resistance and virulence of Listeria monocytogenes Scott A following starvation in physiological saline. J. Food Prot. 67, 470-474.
  26. Moini, S., Tahergorabi, R., Hosseini, S. V., Rabbani, M., Tahergorabi, Z., Feas, X., and Aflaki, F. (2009) Effect of gamma radiation on the quality and shelf life of refrigerated rainbow trout (Oncorhynchus mykiss) fillets. J. Food Prot. 72, 1419-1426.
  27. Nguz, K., Shindano, J., Samapundo, S., and Huyghebaert, A. (2005). Microbiological evaluation of fresh-cut organic vegetables produced in Zambia. Food Cont. 16, 623-628. https://doi.org/10.1016/j.foodcont.2004.07.001
  28. Norteje, K., Buys, E. M., and Minnaar, A. (2006) Use of $\gamma$-irradiation to reduce high level of Staphylococcus aureus on casein - whey protein coated moist beef biltong. J. Food Microbiol. 23, 729-737. https://doi.org/10.1016/j.fm.2006.02.001
  29. Schlosser, W., Hogue, A., Ebel, E., Rose, B., Umholtz, R., Ferris, K., and James, W. (2000) Analysis of Salmonella serotypes from selected carcasses and raw ground products sampled prior to implementation of the pathogen reduction; hazard analysis and critical control point final rule in the US. Int. J. Food Microbiol. 58, 107-111. https://doi.org/10.1016/S0168-1605(00)00293-2
  30. Severine, E., Francoise C., Denise, S., Michel, C., and Melanie S. M. (2001) Radiation Disrupts Protein-DNA Complexes through Damage to the Protein. The lac Repressor-Operator System. Radiat. Res. 156, 110-117. https://doi.org/10.1667/0033-7587(2001)156[0110:RDPDCT]2.0.CO;2
  31. Shin, S. Y., Bajpai, V. K., Kim, H. R., and Kang, S. C. (2007) Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT 40, 1515-1519. https://doi.org/10.1016/j.lwt.2006.12.005
  32. Smith, J. L. and Fratamico, P. M. (2005) Diarrhea-inducing Escherichia coli. In: Food borne pathogens microbiology and molecular biology. Fratamico, P. M., Bhunia, A. K., and Smith, J. L. (eds) Caister Academic Press, Norfolks, UK, pp. 357-382.
  33. Song, H.-P., Kim, B.-N., Jung, S.-E., Choe, J.-H., Yun, H.-J., Kim, Y.-J., and Jo C.-R. (2009) Effect of gamma and electron beam irradiation on the survival of pathogens inoculated into salted, seasoned, and fermented oyster. Food Sci. Technol. 42, 1320-1324. https://doi.org/10.1016/j.lwt.2009.03.018
  34. Song, H.-P., Kim, D.-H., Jo, C., Lee, C.-H., Kim, K.-S., and Byun, M.-W. (2006) Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiol. 23, 372-378. https://doi.org/10.1016/j.fm.2005.05.010
  35. Sutherland J. P., Aheme A., and Beaumont A. L. (1996) Preparation and validation of a growth model for Bacillus cereus: the effects of temperature, pH, sodium chloride and carbon dioxide. Int. J. Food Microbiol. 30, 359-372. https://doi.org/10.1016/0168-1605(96)00962-2
  36. Spotheim-Maurizot, M. and Davídková, M. (2011) Radiation damage to DNA in DNA-protein complexes. Mutat. Res. 711, 41-48. https://doi.org/10.1016/j.mrfmmm.2011.02.003
  37. Trampuz, A., Piper, K. E., Stecklberg, J. M., and Patel, R. (2006) Effect of gamma irradiation on viability and DNA of Stapylococcus epidermidis and Escherichia coli. J. Med. Microbiol. 55, 1271-1275. https://doi.org/10.1099/jmm.0.46488-0
  38. Trigo, M. J., Sousa, M. B., Sapata, M. M., Ferreira, A., Curado, T., Andrada, L., Botelho, M. L., and Veloso, M. G. (2009) Radiation processing of minimally processed vegetables and aromatic plants. Radiat. Phys. Chem. 78, 659-663. https://doi.org/10.1016/j.radphyschem.2009.03.052
  39. WHO/FAO (World Health Organization/Food and Agriculfure Organization). Food irradiation: a technique for preserving and improving the safety of food. Geneva: WHO, (revised). Available from: http://webcat.hud.ac.uk/ipac20/ipac.jsp?full=3100001-!28282-!0&profile=cls. Accessed Jan. 30, 2011.
  40. Youssef, B. M., Asker, A. A., El-Samahy, S. K., and Swailam, H. M. (2002) Combined effect of steaming and gamma irradiation on the quality of mango pulp stored at refrigerated temperature. J. Food Res. Int. 35, 1-13. https://doi.org/10.1016/S0963-9969(00)00153-8

Cited by

  1. Trends in microbial control techniques for poultry products 2016, https://doi.org/10.1080/10408398.2016.1206845