DOI QR코드

DOI QR Code

Magnetic Interaction in FeCo Alloy Nanotube Array

  • Zhou, D. (Division of Functional Materials, Central Iron & Steel Research Institute) ;
  • Wang, T. (Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University) ;
  • Zhu, M.G. (Division of Functional Materials, Central Iron & Steel Research Institute) ;
  • Guo, Z.H. (Division of Functional Materials, Central Iron & Steel Research Institute) ;
  • Li, W. (Division of Functional Materials, Central Iron & Steel Research Institute) ;
  • Li, F.S. (Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University)
  • 투고 : 2011.08.02
  • 심사 : 2011.10.05
  • 발행 : 2011.12.31

초록

An array of FeCo nanotubes has been successfully fabricated in the pores of porous anodic aluminum oxide (AAO) templates by wetting templates method. The morphology and structure of the nanotube array were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. The average diameter of the nanotubes was about 200 nm, and the length was more than 10 ${\mu}m$. Vibrating sample magnetometer and superconducting quantum interference device were used to investigate the magnetic properties of the nanotube array. Interaction between the nanotubes has been found to be demagnetizing as expected and the switching field distribution is broad.

키워드

참고문헌

  1. X. Y. Zhang, L. H. Xu, J. Y. Dai, and H. L. W. Chan, Physica B 353, 187 (2004). https://doi.org/10.1016/j.physb.2004.09.089
  2. J.-R. Choi, S. J. Oh, H. Ju, and J. Cheon, Nano Letters 5, 2179 (2005). https://doi.org/10.1021/nl051190k
  3. F. S. Li, T. Wang, L. Y. Ren, and J. R. Sun, J. Phys.: Condens. Matter 16, 8053 (2004). https://doi.org/10.1088/0953-8984/16/45/027
  4. P. M. Paulus, F. Luis, M. Kroll, G. Schmid, and L. J. de Jongh, J. Magn. Magn. Mater. 224, 180 (2001). https://doi.org/10.1016/S0304-8853(00)00711-3
  5. S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, and Y. W. Du, J. Magn. Magn. Mater. 222, 97 (2000). https://doi.org/10.1016/S0304-8853(00)00541-2
  6. S. C. Lin, S. Y. Chen, S. Y. Cheng, and J. C. Lin, Solid State Sci. 7, 896 (2005). https://doi.org/10.1016/j.solidstatesciences.2005.04.001
  7. J. C. Bao, C. Y. Tie, Z. Xu, Q. F. Zhou, D. Shen, and Q. Ma, Adv. Mater. 13, 1631 (2001). https://doi.org/10.1002/1521-4095(200111)13:21<1631::AID-ADMA1631>3.0.CO;2-R
  8. Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett. 84, 1525 (2004). https://doi.org/10.1063/1.1655692
  9. P. Aranda and J. M. Garcia, J. Magn. Magn. Mater. 249, 214 (2002). https://doi.org/10.1016/S0304-8853(02)00533-4
  10. K. Nielsch, F. J. Castano, S. Matthias, W. Lee, and C. A. Ross, Adv. Eng. Mater. 7, 217 (2005). https://doi.org/10.1002/adem.200400192
  11. F. S. Li, D. Zhou, T. Wang, Y. Wang, L. J. Song, and C. T. Xu, J. Appl. Phys. 101, 014309 (2007). https://doi.org/10.1063/1.2405729
  12. D. Zhou, Z. W. Li, X, Yang, F. S. Wen, and F. S. Li, Chin. Phys. Lett. 25, 1865 (2008). https://doi.org/10.1088/0256-307X/25/5/093
  13. R. Gasparac, P. Kohli, M. O. Mota, L. Trofin, and C. R. Martin, Nano Letters 4, 513 (2004). https://doi.org/10.1021/nl0352494
  14. S. Khizroev, M. H. Kryder, D. Litvinov, and D. A. Thompson, Appl. Phys. Lett. 81, 2256 (2002). https://doi.org/10.1063/1.1508164
  15. M. Zahn, J. Nanopart. Res. 3, 73 (2001). https://doi.org/10.1023/A:1011497813424
  16. H. Riccardo, J. Appl. Phys. 90, 5752 (2001). https://doi.org/10.1063/1.1412275
  17. P. E. Kelly, K. O. Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn. 25, 3881 (1989). https://doi.org/10.1109/20.42466
  18. M. J. Donahue and D. G. Porter, OOMMF User's Guide Version 1.2a3 (2002) (http://math.nist.gov/oommf).
  19. M. Blanco-Mantecon and K. O. Grady, J. Magn. Magn. Mater. 296, 124 (2006). https://doi.org/10.1016/j.jmmm.2004.11.580
  20. G. P. Heydon, S. R. Hoon, A. N. Farley, S. L. Tomlinson, M. S. Valera, K. Attenborough, and W. Schwarzacher, J. Phys. D: Appl. Phys. 30, 1083 (1997). https://doi.org/10.1088/0022-3727/30/7/004
  21. G. F. Goya, T. S. Berquoand, and F. C. Fonseca, J. Appl. Phys. 94, 3520 (2003). https://doi.org/10.1063/1.1599959
  22. A. Robinson and W. Schwarzacher, J. Appl. Phys. 93, 7250 (2003). https://doi.org/10.1063/1.1543895
  23. E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958).

피인용 문헌

  1. Structure and physical properties of iron nanotubes obtained by template synthesis vol.59, pp.4, 2017, https://doi.org/10.1134/S1063783417040266
  2. ion irradiation on structural, electrical and magnetic properties of Ni nanotubes vol.5, pp.3, 2018, https://doi.org/10.1088/2053-1591/aab2bb
  3. Vortex-chirality-dependent standing spin-wave modes in soft magnetic nanotubes vol.123, pp.3, 2018, https://doi.org/10.1063/1.5010405
  4. FeCo nanotubes: possible tool for targeted delivery of drugs and proteins pp.2190-5517, 2018, https://doi.org/10.1007/s13204-018-0889-3
  5. The behavior of Ni nanotubes under the influence of environments with different acidities vol.20, pp.23, 2018, https://doi.org/10.1039/C8CE00362A
  6. Structural and Conductive Characteristics of Fe/Co Nanotubes vol.54, pp.2, 2018, https://doi.org/10.1134/S1023193518020040